JÁRMŰ- ÉS
HAJTÁSELEMEK II.
A projekt címe: „Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés”

A megvalósítás érdekében létrehozott konzorcium résztvevői:

KECSKEMÉTI FŐISKOLA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
AIPA ALFÖLDI IPARFEJLESZTÉSI NONPROFIT KÖZHASZNÚ KFT.

Fővállalkozó: TELVICE KFT.
JÁRMŰ- ÉS HAJTÁSELEMEK II.

Egyetemi tananyag

2011
KULCSSZAVAK:
Tribológia, gördülőcsapágyak, siklócsapágyak, tömítések, vonóelemes hajtások, fogaskerekek, evolvens fogazat, fogaskerekes hajtások.

ÖSSZEFoglalás:
Tartalomjegyzék

1. A TRIBOLÓGIA ALAPJAI .. 10
 1.1. Súrlódási viszonyok ... 10
 1.2. Kenésállapotok bemutatása ... 12
 1.2.1. Határ kenésállapot ... 12
 1.2.2. Folyadék kenésállapot ... 12
 1.2.3. Vegyes kenésállapot .. 13
 1.3. A kopás folyamata .. 13
 1.3.1. A kopás típusai és befolyásoló tényezői .. 13
 1.4. Kenőanyagok .. 15
 1.4.1. Kenőolajok ... 15
 1.4.2. A viszkozitás mértékegységei .. 16
 1.4.3. Kenőzsírok ... 20

2. SIKLÓÁGYAZÁSOK .. 21
 2.1. A siklóágyazásokról általában, felosztásuk, típusai és jellemzői 21
 2.2. Kenőanyag-bevezető szerkezetek .. 22
 2.3. Vegyes súrlódású csapágyak elmélete és méretezése 25
 2.4. Hidrodinamikus csapágyak elmélete és méretezése 27
 2.4.1. Tetszőleges alakú rése vonatkozó kenéselmélet ... 27
 2.4.2. Hengeres radiális csapágyak melegeledése .. 36
 2.4.3. A csapágy olajszükségletének számítása ... 38
 2.4.4. Változó terhelésű és fordulatszámú hidrodinamikus radiális csapágyak 41
 2.4.5. Hidrodinamikus axiális csapágyak elmélete és méretezése 42
 2.4.6. Hidrosztatikus csapágyak elmélete .. 46
 2.4.7. Hidrosztatikus radiális siklócsapágyak ... 46
 2.4.8. Hidrosztatikus axiális siklócsapágyak ... 49
 2.6. Siklócsapágyak anyagai .. 52
 2.6.1. A csapágyháza, tengely és tengelycsapok anyaga ... 52
 2.6.2. A csapágyanyagokkal szemben támasztott követelmények 52
 2.6.3. Csapágypersely és csapágybélés anyagok ... 52
 2.7. Siklócsapágyak szerkezeti kialakítása ... 53
 2.7.1. Radiális csapágyak persely és szerkezet kialakításai 53
 2.7.2. Osztatlan vagy szemcsapágyak .. 54
3. GÖRDÜLŐCSAPÁGYAK

3.1. A gördülőcsapág feladata és tulajdonságai

3.2. Görülgőcsapágak szerkezeti kialakítása

3.3. Görülgőcsapágak típusai

3.3.1. Görülgőcsapágak osztályozása

3.3.2. Radiális és ferde hatásvonalú, vagy gyűrűs golyócsapágak

3.3.3. Radiális gördőcsapágak

3.3.4. Axiális vagy tárcsás golyócsapágak

3.3.5. Axiális vagy tárcsás gördőcsapágak

3.4. A gördülőcsapágak jelölési rendszere

3.5. A gördülőcsapágak kiválasztása a megkívánt élettartam szempontjából

3.6. Görülgőcsapágak statikus alapteherbírása

3.7. Görülgőcsapágak kenése

4. TÖMÍTÉSEK

4.1. A tömítések célja és fajtái

4.2. Érintkező tömítések

4.2.1. Nyugvó felületek érintkező tömítései

4.2.2. Mozgó gépek felületek érintkező tömítései

4.3. Nem érintkező tömítések

4.3.1. Hidrodinamikus tömítések (fojtótömítések)

4.3.2. Hidrostatikus tömítések
1. A TRIBOLÓGIA ALAPJAI

5. HAJTÁSTECHNIKA ÉS HAJTÁSOK .. 110
 5.1. A hajtásról általában .. 110
 5.1.1. A hajtóművek csoportosítása .. 110
 5.2. Dörzskerék hajtások .. 111
 5.2.1. Erőhatások a dörzskerék hajtáshoz ... 111
 5.2.2. A dörzskerék hajtás kialakításának irányelvei .. 112
 5.2.3. Hornyos dörzskerék .. 114
 5.2.4. A dörzskerék hajtás méretezése .. 114
 5.2.5. A dörzskerék hajtások alkalmazása .. 116
 5.3. Vonóelemes hajtások ... 116
 5.4. Erőzáró vonóelemes hajtások .. 117
 5.4.1. A szíjhajtások előnyei és hátrányai ... 117
 5.4.2. A szíjak fajtái és anyagai .. 118
 5.4.3. A szíjhajtások alkalmazása, hajtások elrendezései ... 118
 5.4.4. A szíjhosszúság, tengelytáv meghatározása ... 119
 5.4.5. A szíjra ható erők és a feszültségviszony ... 120
 5.4.6. A szíban keletkező feszültségek .. 122
 5.4.7. A szíjesúszás, hatásfok és az áthúzási fok ... 124
 5.4.8. Ékszíjhajtások ... 126
 5.4.9. Az ékszíj kiválasztása .. 126
 5.4.10. Normál és keskeny ékszíj .. 129
 5.4.11. Kettős ékszíj .. 130
 5.4.12. Fogazott ékszíj .. 130
 5.4.13. Többsoros ékszíj ... 131
 5.4.14. Nagy sebességű ékszíj ... 131
 5.4.15. Széles ékszíj .. 131
 5.4.16. Ékbordás ékszíj .. 132
 5.4.17. Ékszíj tárcsák kialakítása ... 132
 5.5. Alakrázó vonóelemes hajtások ... 133
 5.5.1. Fogasszíjhajtás tulajdonságai ... 133
 5.5.2. A fogasszíják anyagai .. 134
 5.5.3. Alkalmazási területei, elrendezések .. 134
 5.5.4. A fogasszíj kiválasztása .. 134
 5.5.5. A trapéz fogalkák fogasszíj .. 137
 5.5.6. HTD fogasszíj .. 138
 5.5.7. STS/STD és CTD fogasszíják .. 138
 5.5.8. Fogasszíjtárcsák kialakítása ... 139

© Devecz János, BME www.tankonyvtar.hu
5.5.9. Lánchajtások általában ... 139
5.5.10. A lánchajtások előnyei és hátrányai .. 139
5.5.11. A lánchajtások elrendezése .. 140
5.5.12. A lánchajtás kinematikája ... 141
5.5.13. Erőhatások a lánchajtásokban .. 142
5.5.14. A lánchajtás tervezéséhez javasolt üzemi jellemzők .. 143
5.5.15. Lánctípusok, alkalmazásuk ... 144
5.5.16. Lánckerék típusok .. 145
5.6. Fokozat nélkül állítható áttételű mechanikus hajtások, variátorok .. 147
5.6.1. Fokozat nélkül állítható áttételű a dörzskerekes hajóművek .. 148
5.6.2. Vonóelemes fokozat nélkül állítható áttételű hajtások .. 149

6. FOGASKERÉK HAJTÓPÁROK TÍPUSAI FŐ JELLEMZŐI ÉS PARAMÉTEREI. ALAPFOGALMAK 151
6.1. A fogaskerekek csoportosítása: párhuzamos, metsződő és kitérő tengelyvonalú fogaskerék-hajtások ... 151
6.2. A fogaskerékhajtások alapfogalmai: az áttétel és a fogszámviszony fogalma 152
6.3. Az áttétel állandósága. A fogazat kapcsolódás alapvető feltétele... 153
6.4. A kapcsolóvonal, az ellenprofil és a kapcsolószám .. 154

7. A FOGAZATOK ALAPTULAJDONSÁGAI ÉS JELLEMZŐI........................ 157
7.1. Fogprofilalakok.. 157
7.2. A köreolvens származtatása... 158
7.3. Az alaposztás meghatározása ... 160
7.4. Az evolvens fogazat kapcsolóvonalá .. 161
7.5. Az evolvens fogazat tengelytáváltozása.. 161
7.6. Evolvens fogazatok gyártása lefejtő eljárással ... 162
7.6.1. A modul és az osztás fogalma .. 163
7.6.2. A fogazat alapvető elnevezései, jelölései .. 164

8. FOGAZATTÍPUSOK .. 166
8.1. Külső, egyenes fogazatú hengeres kerekek .. 166
8.1.1. Elemi fogazatkapcsolódás ... 166
8.1.2. A profileltolás ... 167
8.1.3. A kompenzált fogazat .. 169
8.1.4. A fogazati rendszerek alkalmazhatóságának határai... 169
8.1.5. A fogvastagság kiszámítása tetszőleges sugáron .. 173
8.1.6. Általános fogazat ... 174
8.1.7. Az evolvens fogazat csúszási viszonyai ... 177
8.1.8. Fogazattartomány és fogazatrendszerk ... 182
8.2. Ferde fogazat ... 184
8.2.1. A ferde fogazat kialakulása és alapfogalmai ... 184
8.2.2. Az elemi, a kompenzált és az általános ferde fogazat összefüggései 186
8.2.3. A ferde fogazat kapcsolószámai ... 187
8.2.4. Az alámentés elkerülése ferde fogazatnál ... 188
8.3. Belső fogazat... 189
8.3.1. A belső fogazatú kerekek geometriája ... 189
8.3.2. A belső fogazat kapcsolószáma ... 191
8.3.3. A belső kapcsolódás csúszásviszonyai ... 192
8.3.4. A belső kapcsolódás interferenciái ... 193
8.4. Kúpkerék hajtások .. 194
8.4.1. A kúpkerék kapcsolódása, alapfogalmai és fogazat típusok 194
8.4.2. Az elemi és a kompenzált kúpkerék összefüggései .. 200
8.4.3. A képzelt hengeres kerékpár, az alámentés elkerülése kúpkerekekkel 200
8.4.4. A síkkerék .. 201
8.4.5. Ferde és ívelt fogú kúpkerék .. 202
8.4.6. Hiperbolikus (hipoid) fogaskerekek tulajdonságai.. 203
8.5. Csigahajtás .. 203
8.5.1. A csigahajtás geometriai viszonyai ... 204
8.5.2. A csigahajtás hatásfoka ... 207

9. A FOGASKEREKEK SZILÁRDSÁGI MÉRETEZÉSE, GYÁRTÁSA ÉS
MÉRÉSE .. 211
9.1. A fogaskerekek szilárdsgási méretezése ... 211
9.1.1. A fogaskerekekre ható érők ... 211
9.1.2. A fogazat károsodási, tönkremeneteli formái .. 213
9.1.3. A fogaskerekek anyagai ... 214
9.1.4. A fogaskerekek szilárdsgási ellenőrzése .. 216
9.2. A fogaskerekek gyártása .. 225
9.2.1. Hengeres fogazatú kerekek gyártása ... 226
9.2.2. A kúpkerekek gyártása ... 231
9.3. A fogaskerekek mérése és illesztése ... 233
9.3.1. A fogaskerekek tűrőzése, illesztése és a foghézag értelmezése 233
9.3.2. A fogaskerekek mérése ... 235

10. FOGASKERÉK-SZERKEZETEK, HAJTÓMŰVEK .. 244
10.1. Fogaskerék-szerkezetek ... 244
10.2. Hajtóműszerkezetek .. 246

IRODALOMJEGYZÉK .. 251
1. A TRIBOLÓGIA ALAPJAI

Az egymáshoz viszonyítva elmozduló és kölcsönösen egymásra ható felületek tudománya és technológiája a tribológia. Ez magában foglalja az ezzel kapcsolatban jelentkező tevékenységeket is. Mivel a súrlódás, kopás jelenségei a felületeken játszódnak le, így a felületfizika és felületkémia új ágának is tekinthető a tribológia. A súrlódás, kopás, kenés azonban nem korlátozódnak csak a fém felületekre, hanem pl. a mára nagymértékben elterjedt műanyagok törvényeszerűségeit is vizsgálja. Ezek azonban nagymértékben eltérnek a fémekre jellemző megállapításoktól, melyek kutatása még ma is folyamatban van.

1.1. Súrlódási viszonyok

Az egymáshoz képest elmozduló anyag részecskéi között fellépő mozgás gátló hatást súrlódásként nevezzük. Két főcsoportra bontható a jelenség:
- külső súrlódás, ez a szilárd testek érintkező felületein lép fel
- belső súrlódás keletkezik az anyag belső részecskéinek relatív elmozdulásakor.

A külső súrlódási ellenállás nagysága Coulomb szerint:

\[F_s = \mu \cdot F_n, \]

ahol:
- \(\mu \) a súrlódási tényező,
- \(F_n \) a felületeket összeszorító normál erő.

A külső súrlódáskor az elmozdulás jellege szerint három esetet különböztetünk meg:
- Csúszó súrlódás, ekkor az egyik alkatrész egy irányban csúszik a másik géprész felületén.
- Forgási súrlódás esetében az egymással érintkező alkatrészek érintkező pontjai egy forgási tengely körül koncentrikus körpályát írnak le. A súrlódási nyomaték:

\[T_s = F_n \cdot r \cdot \mu, \]

ahol:
- \(r \) az elmozduló felületek sugara.

- Gördülő súrlódás. A két egymáson legördülő forgástest mozgását egy erő nyomatéka idézi elő.

Az egymással érintkező felületek közötti súrlódási állapotok (1.1. ábra):
- száraz súrlódás,
- határéteg-súrlódás,
- vegyes súrlódás,
- folyadéksúrlódás,
- az előző esetek kombinációja.
1.1. ábra: Súrlódási állapotok

Folyadéksúrlódásnál az elcsúszó rétegek között ébredő τ csúsztatófeszültség arányos a sebesség függőleges tengely menti változásával (1.2. ábra), vagyis

\[\tau = \eta \frac{du}{dy}, \]

ahol:
\[\eta \] a kenőanyag viszkozitása.

A felső síklap állandó U sebességű mozgatásához szükséges erô:

\[F_s = \int_A \left[\eta \frac{du}{dy} \right]_{y=h} dA, \]

ahol:
\[dA \] a síklap elemi felülete,
\[A \] a síklap felülete.
1.2. Ábra: A viszkozitási tényező megállapítása

1.2. Kenésállapotok bemutatása

1.2.1. Határ kenésállapot

Abban az esetben, ha kenőanyag borítja a súrlódó felületeket, a feltételei pedig nincsenek meg a folyadékkenés létrejöttének, akkor a tényleges érintkezési felületen a súrlódás a hozzátapadó kenőanyagrétegek közötti kölcsönhatás következtében alakul ki. Ezt az állapotot nevezzük határ kenésállapotnak. Ekkor a kenőanyag legfőbb ismérvei a kötési szilárdság és a tapadóképesség. Kialakulhat kémiai kötődéssel vagy fizikai tapadással, továbbá befolyásolhatja a diffúzió és az elektrosztatikus erő.

1.2.2. Folyadék kenésállapot

Ha a kenőanyagréteg a súrlódó felületeket teljesen elválasztja egymástól, akkor folyadék kenésállapot alakul ki. Ebben az esetben a folyadék belsejében megnyílvanuló nyírásból származik a súrlódási ellenállás. Ez a kenésállapot a legkedvezőbb, itt a kopás elhanyagolható. A teherbírás nagysága a kenőfilmben kialakuló nyomás és a terhelt felület nagyságától függ.

A kenőfilm nyírásából adódó súrlódási veszteség itt is növeli a hőmérsékletet, de ez sokkal könnyebben szabályozható itt, mint határ kenésállapotban, mert az egyes felületek a kenőanyaggal fűthetők–hűthetők.

Hidrosztatikai vagy hidrodinamikai hatással alakítható ki. A hidrosztatikus szerkezetekben külső energiaforrás vagy tápegység biztosítja a megfelelő vastagságú kenőanyagréteg és a terhelés elviseléséhez szükséges nyomás kialakítását. Ezzel a megoldással - ha a kenőanyag a súrlódó felületekhez tapad és viszkózus – bármilyen súrlódó szerkezetben létrehozható a folyadéksúrlódási állapot.

Hidrodinamikai kenés esetén a mozgó súrlódó felületek bizonyos fordulatszám felett önműködően szállítják a terhelt zónába a kenőanyagot, így alakul ki a folyadéksúrlódás és a megfelelő nyomás.

Kialakulásának feltételei:
- viszkózus folyadék jelenléte a kenőrésben,
1. A TRIBOLÓGIA ALAPJAI

- tapadóképesség a kenőanyag és a fémfelületek között,
- relatív sebesség megléte a síklófelületek között,
- mozgás irányába szükülő rés.

E megoldással folyadék kenésállapot úgy valósítható meg, ha a felületek simák, azokon bárázdák, mikro- és makro egyenlőségek nincsenek.

1.2.3. Vegyes kenésállapot

Vegyes kenésállapotról beszélünk abban az esetben, ha nem megfelelő vastagságú a kenőfilm a felületek elválasztásához, így helyenként szilárdtest-érintkezés alakul ki, ezért egyidőben a folyadékkenés és a határkenés is fennáll.

A legtöbb problémát a vegyes súrlódási állapotban működő berendezések teherbírásának és súrlódási veszteségének számítása okozza.

E kenésállapotban üzemelő gépek berendezésének teherbírásának és súrlódási veszteségének számítása okozza.

1.3. A kopás folyamata

A kopáson a felületi részeknek a súrlódó erők hatására bekövetkező folyamat, az üzemeltetés szempontjából káros leválását értjük.

1.3.1. A kopás típusai és befolyásoló tényezői

A kopást befolyásoló hatásokat három fő csoportba sorolhatjuk.

1.) a felüleitre vonatkozó különböző jellegű igénybevételek döntő befolyást gyakorolnak a kopásra:

<table>
<thead>
<tr>
<th>Relatív mozgás</th>
<th>Terhelés</th>
<th>Súrlódás</th>
</tr>
</thead>
<tbody>
<tr>
<td>csúszó</td>
<td>nyugvó</td>
<td>száraz</td>
</tr>
<tr>
<td>gördülő</td>
<td>lüktető</td>
<td>félszáraz</td>
</tr>
<tr>
<td>csúszó- gördülő</td>
<td>váltakozó</td>
<td>vegyes</td>
</tr>
<tr>
<td>folyamatos-szakaszos</td>
<td>dinamikus</td>
<td>folyadék</td>
</tr>
</tbody>
</table>

2.) További befolyásoló hatás a súrlódó anyagok tulajdonságaitól adódik:
3.) A leglényegesebb befolyást a közbenső anyag, vagyis a kenőanyag jelenti:

A kopás típusai:
 a.) Elsőrendű adhéziós, vagy hideg hegesedéses kopás
 b.) Oxidációs vagy súrlódásos kopás.
 c.) Meleghegesedéses, vagy másodrendű adhéziós kopás.
 d.) Abrazív kopás.
 e.) Fáradásos kopás.

A kopás időbeni változása lehet degresszív, ha az idő folyamán a kopadék fajlagos mennyisége csökken, lineáris ha állandó és progresszív ha rohamosan növekszik (1.3. ábra).
A gépalkatrészek tervezése során nagy gondot kell fordítani a minimális kopás elérésére. Ezért használunk egyrészt különböző kenőanyagokat, amelyeknél olyan összetételt igyekszünk elérni, hogy a kopás kedvezően alakuljon. Az egyes anyagpárosítások kopási viselkedésének meghatározása kísérleti úton történik.

1.3.2. Műanyagok kopása

A fizikai-kémiai tulajdonságokban található eltérések miatt a műanyagok kopási típusa és mechanizmusa jelentősen eltér a fémemektől. A sírlódó műanyagok főleg termikusan kopnak, a felületi rétegek a hőhatás következtében elszenesednek. A sírlódási felülettől bizonyos távol-ságra elhelyezkedő rétegekben a műgyanta térhálósodik. Egy bizonyos hőmérsékletintervallumban a felületekhez közelebb lévő rétegekben, ahol a hőmérséklet magasabb, a műgyanta makrorészecskéi felbomlanak, valamint a töltőanyagok fizikai-kémiai tulajdonságai megváltoznak. A felbomlott műgyanta a sírlódó jellegű kopással szemben egész kis ellenállást mutat.

Ha a hőhatás nem ilyen intenzív, akkor a kopás más jellegben alakul ki. Tipikus példája ennek a műanyagcsapágyknál, illetve a műanyaggal bevont tengelyek és féllepet: kopásmechanizmus. A műanyagcsapágy érintkező felületének csúcsai nem törnek le, hanem elhajlanak az akadály elé, rugalmas-képlékeny alakváltozással mintegy rásimulva a felületre. A fémfelület olyan csúcsai, amelyek szilárdsága nem bírja el az igénybevételt, letöredeznek. Az így letört fémrészecske legtöbbször beágyazódik a műanyagperselybe. Ez a folyamat játszódik le, amíg a csapágy be nem járódik.

1.4. Kenőanyagok

A kenőanyagok egymáson elmozduló géprészeken fontos szerepet játszanak. Kenőolajok, kenőzsírok és folyadékok lehetnek.

1.4.1. Kenőolajok

A csapágyak kenése szempontjából a legfontosabb kenőanyag az ásványi eredetű kenőolaj. A nyers kenőolajokat finomítják, bizonyos esetekben adalékolják, hogy a legkülönfélebb feladatokra is alkalmasak legyenek.

A kenőolajokkal szemben támasztott követelmények:

- megfelelő viszkozitás,
- jó tapadóképesség,
- magas viszkozitási index,
- alacsony dermedéspont,
- magas fokú tisztaság,
- stabil szerkezet,
- ellenálló legyen az oxidációval és egyéb vegyi hatásokkal szemben,
- nyomás-állóság,
- emulziót ne képezzzen,
- kis habzási hajlam,
- tűzállóság,
- gépelemeket ne károsítsa,
- korrozióvédő hatás.

A kenőolajok alapanyaga többségében ásványi eredetű. A nyers ásványolaj oldószeres finomítása útján kapjuk a különböző minőségű olajokat. A gépiparban, a mezőgazdaságban, közle-
kedésben használt csapágyak különböző minőségű olajat igényelnek, ezeket különböző csoportokba sorolhatjuk:

- Gépolajok.
- Turbinaolajok. Itt az olajnak nem csak súrlódáscsökkentő hatása van, hanem a feladat még a kellő hűtés biztosítása is. Nem szabad gyorsan öregednie, amit oxidációgátló adalékanyagokkal érnek el.
- Kompresszorolajok. A követelmény azonos, mint a belsőégésű motorolajokkal szemben.
- Műszerolajok. Igen nagyfokú tisztaság, aránylag kis viszkozitás, savmentesség, és nincs korróziós hatás.
- Aktivált kenőolajok. Nagy felületi terhelésre, kényes kenés esetekre, különleges anyagok, kén, kénvegyületek, klórvegyületek adalékolásával ezeket az olajokat használják. Tipikus példa erre a gépkocsik differenciálműje, ivelt fogazatú kúpkerék-hajtások.
- Szilikonolajok. Különleges esetekben használjuk, mivel viszkozitásuk nagy hőmérsékletű lehet, között alig változik, tehát viszkozitási indexük nagy, értéke 160-ig is fel lehet. Hő hatására kb. 250 °C-on bomlanak, viszont alacsony hőmérsékleten is jó kenőképességűek, műszerekben, repülőgépekben alkalmazzák.

Az ásványolajokat a tulajdonságai javítása és a költségek csökkentése miatt szintetikus olajokkal keverhetik.

Az alapolajokhoz az alábbi adalékanyagok keverhetők:
- dermedéspont-csökkentők,
- viszkozitás módosítók,
- súrlódáscsökkentők,
- korrózió gátlók,
- kopás csökkentők,
- detergensdiszpergálók,
- oxidáció gátlók,
- demulgeátorok,
- habzás gátlók,
- nagynyomás-állók.

1.4.2. A viszkozitás mértékegységei

A Newton-féle definíció értelmében a viszkozitás a belső súrlódás arányossági tényezője.

1.) Abszolút vagy dinamikai viszkozitás.
1. A TRIBOLÓGIA ALAPJAI

\[\eta = \frac{\tau}{du/dy} = \frac{[N/m^2]}{[m/s]} = [Ns/m^2] = [Pas]. \]

2.) Mozgástani vagy kinematikai viszkozitás:

\[v = \eta = \frac{[N/m^2s]}{[kg/m^3]} = \frac{[N/m^2s]}{[Ns/m^3]} = [m^2/s]. \]

A kinematikai viszkozitás korábban használt egysége: 1 Stoke, jele 1 [St].

\[1[St]=1 \cdot 10^{-4} \left[\frac{m^2}{s} \right], \]

\[1[cSt]=1 \cdot 10^{-6} \left[\frac{m^2}{s} \right] = 1 \left[\frac{mm^2}{s} \right]. \]

Szokásos a kinematikai viszkozitást \(\left[\frac{mm^2}{s} \right] \)-ban is megadni, átszámítása:

\[\eta = v \left[\frac{mm^2}{s} \right] \cdot 10^{-6} \rho \left[\frac{kg}{m^3} \right] = v \left[\frac{mm^2}{s} \right] \cdot 10^{-6} \cdot 0.9 \cdot 10^3 [Ns/m^3] = 0.9 \cdot v \left[\frac{mm^2}{s} \right] \cdot 10^{-3} [Pas]. \]

A viszkozitás a hőmérséklet függvényében változik (1.4. ábra és 1.5. ábra) és a nyomástól függ (1.7. ábra). A hőmérséklet a kenés szempontjából kedvezőtlenül befolyásolja. A nagyobb viszkozitású olajok érzékenyebbek a hőmérsékletre.

![1.4. ábra: A viszkozitás változása a hőmérséklet függvényében](image-url)
Az MSZ 3258 szabvány az alábbi függvényt adja meg a kapcsolatra:

\[\log \log (\nu + 0.8) = A - B \log T \]

Az \(A \) és \(B \) a kenőolajra jellemző érték, \(\nu \) a kinematikai viszkozitás, \(T \) az abszolút hőmérséklet.

A különböző kenőolajok viszkozitása nem egyformán változik. A változás jellegét a viszkozitási index adja meg (1.6. ábra).
1.6. ábra: A viszkozitási index

Egy vizsgált olaj viszkozitási indexét a következőképpen számítjuk ki. Meghatározzuk a kinematikai viszkozitását mm/s-ban 37,78 ºC-on (100 ºF) és 98,89 ºC-on (210 ºF). A V ponton keresztül meghúzzuk a két alapolaj egyenesét, amelynek ismerjük 37,78 ºC-on a viszkozitását (L illetve H). Ennek alapján a vizsgált olaj viszkozitása:

\[VI = \frac{L - U}{L - H} \times 100 \]

Az olajok viszkozitása a nyomás függvényében is változik (1.7. ábra). A kapcsolat exponenciális:

\[\eta = \eta_1 a^{p - p_1} \]

ahol \(\eta \) a keresett viszkozitás \(p \) nyomáson, \(\eta_1 \) a \(p_1 \) nyomáshoz tartozó viszkozitás, az \(a \) konstans értéke ásványolajoknál \(a \approx 1,003 \). Az összefüggés adott állandó hőmérsékletre érvényes.

1.7. ábra: A viszkozitás változása a nyomás függvényében

A nyomás befolyását adott esetekben nem lehet figyelmen kívül hagyni. Igaz ez a belső égésű motorok főtengelycsapágyainál, ahol \(p_{\text{max}} = 80 \ldots 90 \text{ MPa} \) is lehet. Ekkor a viszkozitás a normális értékhez képest, figyelembe véve a hőmérséklet növekedés csökkentő hatását is 5–8-szorosra emelkedik, ami a kenés szempontjából kedvező.
1.4.3. Kenőzsírok

Alapanyagai a különböző minőségű ásványolajok, amelyhez különböző bázisú fémszappanokat kevernek. Az olaj feladata a kenőképesség biztosítása, a szappantartalom pedig a zsír keménységét és tapadóképességét adjja. Lehetnek mész- (kálcium-), nátrium-, lítium-, és alumíniumbázisúak.

Fontos tulajdonságuk a konzisztencia. A zsírok belső súrlódásánál egy bizonyos hőmérsékleten alul a kenőzsír egy vékony rétegének eltolódásához a zsír konzisztenciájától függő, \(\tau_0 \) csúsztató feszültség szükséges.

\[
\tau = \tau_0 + \eta \frac{du}{dy},
\]

Meghatározásakor a vizsgálandó zsírba egy kúpos felületet nyomnak bele, meghatározott súlyval, 5 másodpercen keresztül. A benyomódás mélységének tízedmilliméterekben kifejezett értéke a penetráció.

A bárium-, alumíniumzsírok igen lágyak, alacsony cseppenésponttal. Legkedvezőbb tulajdonságú a lítiumzsír, amely jó hőálló, jó tapadóképességű és vízálló.

Kenőzsírokkal tiszta folyadéksúrlódás nem valósítható meg. Előnyesen alkalmazható viszont az alábbi esetekben:

- egyszerű csapágyszerkezeteknél, gördülőcsapágyaknál,
- nedvességnek, pornak kitett csapágyaknál, ahol kis fordulatszám van és a zsír porvédélemben miatt is jó,
- ahol olajkenés nem lehetséges,
- kis kerületi sebesség és nagy fajlagos csapágyterhelés esetén.

A zsírkenés hátránya, hogy az önműködő utántöltés általában nehézkes, az utánsajtolás a szűk csapágyhézagba jelentős erőt igényel. Hőátadása rosszabb, mint az olajkenésé, esetenként a zsírt rövid üzemidő után újra adagolni kell.

A zsírok tulajdonságait szintén adalékkanyagokkal lehet javítani. A fontosabb kenőzsírfajtáták szabványosították.
2. SIKLÓÁGYAZÁSOK

2.1. A siklóágyazásokról általában, felosztásuk, típusaik és jellemzőik
A géprészekön az olyan szerkezeti kapcsolatot, amelyben üzem szerűen megvalósul a két géprész terhelés alatti viszonylagos mozgása és emellett ez a két géprész relatív helyzetét is meghatározza ágyazásnak nevezzük.

A siklóágyazásokhoz soroljuk azokat a szerkezeteket is, amelyekben az egyik mozgó elem, a tengelycsap sugara, közeledik a nullához, vagy pedig a másik szélső esetben, a végtelenhez tart. Ilyen a csúcs-csapágy és az egyenes vezeték.

Siklóágyazásoknak két alapformája van a csapágyak és a vezetékek.

![2.1. ábra: Egyenesvezeték](image1)

![2.2. ábra: A csapágy kialakítás elve](image2)

A siklócsapágyaknál a következő szúrlódási állapot állhat fenn:

a.) száraz-, ill. vegyes szúrlódással működő csapágyak. Általában kis terhelésű, kis fordulatszámú, zsirkenésű vagy önkenő csapágyperselyekkel. Nagy terhelésű, fordulatirányváltással dolgozó csapágyak, ahol nem alakulhat ki folyadéksúrlódás, pl. dugattyúcsap-szeg.

© Rácz Péter, SZE www.tankonyvtar.hu
b.) folyadéksúrlódással üzemelő csapágyok.
- hidrodinamikus,
- hidrosztatikus.

Siklógyazásokkal szemben a következő követelményeket támaszthatjuk:
- kis súrlódási tényező és kis mértékű kopás mellett üzembiztos működés,
- a kenés kimaradása vagy időszakos túlterhelés esetén is biztos üzemet lehessen fenn-
tartani, tehát jó legyen a szükségfutási képesség,
- sugárirányban és tengelyirányban megfelelő legyen a futáspontosság.

A siklócsapágyak a ható terhelő iránya szerint lehetnek:
- ha a terhelés sugárirányú, hordozócsapágy vagy radiális csapágy,
- ha a terhelés tengelyirányú, támasztócsapágy, talpcsapágy vagy axiális csapágy.

A radiális megtámasztáson kívül a csapágyak feladata az is, hogy a tengelyt tengelyirányban
cseppeltesse. Erre szolgál a vezetős csapágy, ami a tengelyirányú helyzetet meghatározza.

Radiális csapágyak. A terhelés a tengelyre merőleges vagy sugárirányú. A tengelycsap lehet
hengeres vagy kúpos felületű.

A végcsap túlnyomóan hajlítható, a nyakcsap hajlítható és csavarásra is terhelve van, a nyíró
igénybevételét elhanyagolható.

Axiális vagy támasztó csapágyak. Feladataik a tengelyirányú erő felvétele. Kialakításuk több-
féle lehet.

Mindkét irányú terhelést fel tudja venni a gömbcsapágy, továbbá ennek beállónak is kell len-
ni.

2.2. Kenőanyag-bevezető szerkezetek

Megkülönböztetünk időszakos kenést biztosító berendezéseket, melyeket inkább a zsírkenésű
csapágyaknál használunk.

A folyamatos kenést biztosító rendszerek olajkenésűek. Itt a kenőanyag szükséglet tág határok
között változhat.

Önműködő kenést valósíthat meg olyan persellyel, ahol a beépítés előtt kenőolajjal töltjük föl
azt. Ez az önkenő vagy porfém csapágy.

Zsírkenés. A kenőzsir bevezetésére a zsírzsírlencéck és a zsírzsírgombok használatosak.
Olajkenés. Ezzel folyamatos és megfelelően szabályozott kenést tudunk megvalósítani. Kenési rendszerek:

a.) Tartós egyedi kenés. Pl.: kanócos olajozás, önkenő csapágyak kenési rendszere.

b.) Átfolyó kenési mód. A kenőanyag ít csak egyszer végez kenést.

c.) Keringtető (cirkulációs) kenési mód. A kenőanyag sokszor körbekering a rendszerben.

A gyűrűs kenési megoldások esetében a kenőolaj egy része veszteséggént a csapágypersely oldalán elfolyik, de a nagyobb része keringve újra felhasználódik. Két típusa ismeretes, a leggyakoribb a kenőgyűrűs kivitel (2.4 ábra és 2.5. ábra).

2.4. ábra: Laza kenőgyűrű és kenési mód

2.5. ábra: Merev kenőgyűrű és kenési mód

Korszerű kenési rendszer a központi kenés. Az olajat dugattyús- vagy fogaskerék szivattyú szállítja csövezetéken keresztül a kenési helyekre.

A legegyszerűbb központi kenési rendszert átfolyó kenéssel lehet megoldani. Ez a berendezés alkalmazható szerszámgépeken és szállítóberendezéseken.
2.6. ábra: Központi kenési rendszerek vázlata

A 2.6. ábra olyan központi kenési rendszert mutat, amelyben a kenőolaj cirkulál. Működése automatizálható. A kenőanyag az 1 olajtartályból a 2 szivattyún, a 3 szűrőn és a 4 visszahütőn keresztül az 5 elosztóba és onnan az egyes kenési helyekre (6) jut. Innén pedig az olaj visszavág a tartályba. A rendszer helyes működését a 7 olajnyomás mérő és a 8 hőmérő jelzi.

A központi olajozások leginkább fogaskerék-szivattyúval működnek. Belsőégésű motorokban is ezeket a konstrukciókat alkalmazzák.

Zárt hajtóműházakban és a belsőégésű motorokban szokás szóróolajozást is alkalmazni. A merülőkenésnél az olajfürdőben lévő nyílás keresztül a szivattyúzó hatás miatt az olaj az elmozduló felületek közé kerül.

Belsőégésű motorok esetén a szivattyús kenést legtöbbször szóróolajozással kombinálják.

2.7. ábra: Szóró- és szivattyús kenés kombinációja

Különleges eljárás az olajkölkenés. Itt a levegővel porlasztott olaj a csúszó felületek közé jut, mellyel bizonyos hűtőhatás is jelentkezik.
2.3. Vegyes súrlódású csapágyak elmélete és méretezése

Hengeres felületű hordozó csapágyak esetén a csapterhelésből a csapvetület felületegységére vonatkoztatott terhelés (2.8. ábra):

\[P_k = \frac{F}{b \cdot d}, \]

ahol \(b \) a csap szélessége, \(d \) az átmérője.

Ez egy elméleti érték, mert a valóságban a nyomás nem egyenletesen oszlik meg sem a kerület mentén, sem a szélesség irányában.

![2.8. ábra: A csapágy közepes felületi terhelése](image)

A siklócsapágyakban fellépő súrlódási tényező függ: a fajlagos csapágyterheléstől, a kenőanyag viszkozitásától, a fordulatszámotól valamint a persely és a csap közötti játéktől. A súrlódási tényező értékét különböző fordulatszámokra Stribeck állapította meg kísérleti úton (2.9. ábra).

Álló helyzetben vagy pedig igen kis fordulatszámon a perselyben a csap fémes súrlódással érintkezik, kenőolaj a felületek között nincs. Amint a csap forgásnak indul elkezd kialakulni a vegyes súrlódási állapot. A fordulatszám további növelésével a két alkatrész szétválnak és tiszta folyadéksúrlódás jön létre. Ekkor a súrlódási tényező értéke öntöttvas perselynél 0,0035, fehérfém belésünél 0,0017. A tengely a folyadéksúrlódás létrejöttével átdobódik a persely másik oldalára, vagyis a forgásirányban excentrikusan helyezkedik el. A persely és a csap között ekkor jelentkezik a legkisebb csapágyrés, a \(h_{\text{omin}} \) résméret.

A növekvő fordulatszámon az excentricitás csökken olyannyira, hogy elméletileg a csap koncentrikusan helyezkedik el a perselyben.

© Rácz Péter, SZE
www.tankonyvtar.hu
2.9. ábra: A súrlódási tényező változása a kerületi sebesség függvényében

a.) Radiális csapágyak méretezése

A tengelycsap szükséges hosszúsága kenéstechnikai (melegedési) szempontból:

\[b \geq \frac{\pi \cdot F \cdot n}{(p_k \cdot v)_{meg}}. \]

A méretezéséhez létezik a b/d viszonytartomány, amit táblázatból lehet felvenni. Néhány csapágytípusra létezik a \((p_k \cdot v)_{meg}\) szorzat is.

b.) Axiális csapágyak méretezése

Zsirkenés esetére számíthatjuk a szükséges felfekvő felületet kör keresztmetszetre:
vagy körgyűrű esetén:

\[A = \pi \left(r_1^2 - r_0^2 \right) \cdot \pi \approx 2r_k \cdot \pi \cdot b = \frac{F_{av}}{p}, \]

ahol \(r_1 \) a külső, \(r_0 \) a belső, \(r_k \) a középső sugár, \(b \) a gyűrűsülelet.

A melegedésre való méretezéskor meg kel határozni a \(p \cdot v \cdot k \) szorzatot, ami egy adott értéknél nagyobb nem lehet. A fordulatszámából meghatározható a \(v_k \) közepes kerületi sebesség körgyűrűfelület esetén: \(v_k = r_k \cdot \omega \), ahol

\[r_k = \frac{r_1 + r_0}{2}. \]

A legkisebb gyűrűsülelet:

\[b_{min} = \frac{F_{av}}{2\pi(p \cdot v_k)_{avg}} \cdot \omega. \]

A csapágy sürődási nyomatéka:

\[T_s = \int_{r_0}^{r_1} r_2 \pi \mu dp = 2\pi \mu \int_{r_0}^{r_1} r^2 \cdot dr = 2\pi \mu \frac{r_1^3 - r_0^3}{3}. \]

2.4. Hidrodinamikus csapágyak elmélete és méretezése

2.4.1. Tetszőleges alakú résre vonatkozó kenéselmélet

Ahhhoz, hogy a siklopályak között létrejöhessen a hordozóképes olajréteg a fentiekben közölt négy feltételnek teljesíteni kell.

A felső lap egyenlete \(y_1 = h = f(x,z) \), ez a lap áll, az alsó lap x irányban \(U = \) állandó sebességgel mozog, helyzetét az \(y_2 = 0 \) összetette határozza meg. Az elméleti tárgyalás során számos egyszerűsítő feltevések alkalmazásával éltünk.
Így az elemi hasáb egyensúlyi egyenletét felirhatjuk x és z tengely irányában (2.10. ábra):

x irányban:

\[-d\tau_x dz dx - dp dy dz dy dz dx dz + d\mu = 0, \quad \text{ebből} \quad \frac{\partial p}{\partial x} = -\frac{\partial \tau_x}{\partial y}.\]

z irányban:

\[-d\tau_z dz dx - dp dy dz = 0, \quad \text{ebből} \quad \frac{\partial p}{\partial z} = -\frac{\partial \tau_z}{\partial y}.\]

A további levezetéseket mellőzve az u és w sebességeszletlás egy adott helyen:

\[u = \frac{1}{2\eta} \cdot \frac{\partial p}{\partial x} \left(y^2 - y h \right) - U \left(\frac{y}{h} - 1 \right), \quad \text{ill.} \quad w = \frac{1}{2\eta} \cdot \frac{\partial p}{\partial z} \left(y^2 - y h \right).\]
2. SIKLÓÁGYAZÁSOK

2.11. ábra: Sebességeológos tetszőleges kenőrészben

A sebességeológos csak közbenő eredmény a nyomászológos meghatározása érdekében. A megoldáshoz a kontinuitásegyenletét kell felhasználni. Így megkapjuk a csapágykenés differenciálegyenletét (2.11. ábra):

\[
\frac{\partial}{\partial x} \left(h^3 \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) - 6\eta U \frac{dh}{dx} = 0 .
\]

A nyomásfüggvény:

\[
p = -6\eta U \int_{0}^{h^*} h^* - h \, dx .
\]

A síklófelületet terhelő külső erő:

\[
F = \int_{x_1}^{x_1+\ell} \int_{-b/2}^{b/2} p(x,z) \, dx \, dz .
\]

A súrlódási erő:

\[
F_s = \int_{x_1}^{x_1+\ell} \int_{-b/2}^{b/2} \left[\tau_0 \right]_{\gamma=0} \, dx \, dz .
\]

A súrlódási tényező a Coulomb-féle értelmezésben:

\[
\mu = \frac{F_s}{F} .
\]
Folyadéksúrlódási állapot hengeres radiális csapágyakban

Feltételezzük, hogy a csapágyat terhelő F erő a csapágy hosszának közepén működik, a csap és a persely tengelyei párhuzamosak.

![Diagram](image)

2.12. ábra: Hengeres radiális csapágy geometriai jellemzői

A polárkoordináta-rendszert a csap középpontjához kapcsoljuk. Ezzel kapcsolatos fogalmak:

Csapágyjáték: a felületek legnagyobb relatív elmozdulási lehetősége egy meghatározott irányba.

Relatív játék (2.12. ábra):

$$\psi = \frac{J}{d} = \frac{D - d}{d} = \frac{R - r}{r} = \frac{\Delta r}{r}$$

Csapágyhézag: a futófelületek között adott helyen mérhető legnagyobb távolság.

Excentricitás: a csap és a perselyfurat középpontja között jelentkező távolság egy adott üzemállapotban: e, mm-ben.

A relatív excentricitás: résjellemző,

$$\varepsilon = \frac{e}{\Delta r}.$$

Csapágyrés: a csapágy meghatározott üzemállapotában, a futófelületek között, adott helyen mérhető távolság, jele: h.

Relatív résméret: $\delta = \frac{h}{\Delta r}$.

Résfüggvény: a csapágyrés vagy a relatív rés, hely szerinti változását leíró függvény: $h = f(\varphi)$.

www.tankonyvtar.hu © Rácz Péter, SZE
A résfüggvény nagysága a 2.12. ábra jelöléseivel:

\[h \approx r \cdot \psi (1 - \varepsilon \cdot \cos \varphi) = \Delta r (1 - \varepsilon \cdot \cos \varphi). \]

A legkisebb résméret, itt \(\varphi = 0 \):
\[h_0 = \Delta r (1 - \varepsilon). \]

A legnagyobb nyomás helyén:
\[h^* = r \psi (1 - \varepsilon \cdot \cos \varphi^*). \]

A relatív résméret:
\[\delta - \frac{h}{\Delta r} = 1 - \varepsilon \cdot \cos \varphi. \]

A legkisebb résméret:
\[\frac{h_0}{\Delta r} = 1 - \varepsilon. \]

A nyomásfüggvény:

- az olaj bevezetésének helyén: \(\varphi = \varphi_1 \)-nél \(p = p_1 \),
- az olajkilépés helyén: \(\varphi = -\varphi_2 \)-nél \(p = p_2 \),

Végfelel hosszú csapágy esetében:
\[p_\infty = \frac{6 \eta \omega}{\psi^2} F_\infty (\varepsilon, p_1, p_2, \varphi_1, \varphi_2, \varphi). \]
2.13. ábra: A nyomás változása a csap kerülete mentén

A kenőrészben keletkező olajnyomás egyensúlyozza ki a csapra ható külső terhelést.
2.14. ábra: A csapágy egyensúlyi állapota

\[F_1 \cdot \sin \beta = \int_{\varphi_1}^{\varphi_2} p_\varphi (\varphi) \sin \varphi d\varphi = \frac{6 \eta \rho \omega}{\nu^2} \varphi (\varepsilon, \varphi_1, \varphi_2, p_1, p_2), \]

\[F_1 \cdot \cos \beta = \int_{\varphi_1}^{\varphi_2} p_\varphi (\varphi) \cos \varphi d\varphi = \frac{6 \eta \rho \omega}{\nu^2} \varphi (\varepsilon, \varphi_1, \varphi_2, p_1, p_2). \]

A két komponenst négyzetre emelve és összegezve, az eredő a csapágyterhelés lesz:

\[F_1 = \frac{6 \eta \rho \omega}{\nu^2} \sqrt{\varphi_1^2 + \varphi_2^2} = \frac{6 \eta \rho \omega}{\nu^2} \varphi (\varepsilon, \varphi_1, \varphi_2, p_1, p_2). \]

A fenti összefüggések végére hosszúságú csapágyra vonatkoznak.

Folyadéksúrlódási állapot véges szélességű hengeres radiális csapágyakban

A véges csapágy szélénél a kialakuló nyomás nagysága csökken a végtereken csapágyhoz képest. A kisebb résméret megvalósítása csak gondos felületi megmunkálással érhető el, ekkor állhat elő a tiszta folyadéksúrlódás és a vegyes súrlódás elkerülhető.

A végtelen csapágyra a nyomásfüggvény:

\[p_\varphi = \frac{6 \eta \rho \omega}{\nu^2} F_\varphi (\varepsilon, p_1, p_2, \varphi_1, \varphi_2, \varphi). \]

A nyomásfüggvény véges csapágyra:
\[p = \frac{6\eta_0 \psi^2}{\eta} F(\varepsilon, \phi_1, \varphi, z, b/d) \].

Ha azt feltételezzük, hogy a nyomás a csapágy szélessége mentén másodfokú parabola szerint változik, akkor véges csapágyszélességre a nyomásfüggvény:

\[p = c \cdot \frac{6\eta_0 \psi^2}{\eta} \left[1 - \left(\frac{2z}{b} \right)^2 \right] F_1(\varepsilon, \phi). \]

A c értéke a kerülte mentén állandó és nagysága a b/d viszonyától és a relatív excentricitástól függ.

Csapágy jellemző szám vagy csapágyterhelési szám (Sommerfeld-szám):

\[\phi(\varepsilon, \phi_1, b/d) = \frac{P_0 \psi^2}{\eta \omega} = S_0. \]

Ez az összefüggés a csapágykenés hidrodinamikai hasonlósági törvénye.

![Diagram](image)

2.15. ábra: A csapágyterhelési szám változása az \(\varepsilon \), ill. a b/d viszony szám függvényében

Ha az előbbi összefüggést a nyomásra oldjuk meg, kapjuk:

\[p_s = \frac{\eta_0 \psi^2}{\eta} \phi(\varepsilon, \phi_1, b/d) = \frac{\eta_0 \psi^2}{\eta} S_0. \]
Általában kis terhelésnél kis viszkozitású, nagy terhelésnél nagy viszkozitású olajat célszerű használni. A terhelhetőség viszont fordítva arányos a relatív játék négyzetével.

A csapágyban a súrlódási nyomaték meghatározása céljából a csap felületén működő csúsztatófeszültséget \(\tau_0 \)-t kell meghatározni.

2.16. ábra: A súrlódási nyomaték meghatározásához

A levezetéseket mellőzve (2.16. ábra):

\[
\tau_0 = \eta U \left[\frac{4}{(1 - \epsilon \cos \varphi)} \frac{\Delta r}{r} - \frac{3(1 - \epsilon \cos \varphi)}{r(1 - \epsilon \cos \varphi)^2} \right].
\]

Az elemi súrlódási erő:

\[
dF_s = \tau_0 r d\varphi dz.
\]

Vegyes szélességű csapágy esetén:

\[
F_s = \frac{\eta \tau_0}{\psi} b \phi(\epsilon, \varphi_1, b/d).
\]

A csapágyterhelés meghatározása:

\[
F = \frac{\eta \tau_0}{\psi^2} b \phi(\epsilon, \varphi_1, b/d).
\]

A súrlódási tényező behelyettesítés után:

\[
\mu = \frac{F_s}{F} = \frac{\psi C(\epsilon, \varphi_1, b/d)}{\psi}.
\]

A C függvényt kifejezve kapjuk a súrlódási számot, amelyet a csapágyak számításakor olyan jellegben használunk, mint a csapágyterhelési számot:

\[
C = \frac{\mu}{\psi}.
\]

A súrlódási szám értékét diagramokban tudjuk megadni a b/d viszonyszám, ill. az \(\epsilon \) relatív excentricitás függvényében. A \(\varphi \) olajbevezetési szögére vonatkozóan félperselyre és zárt perselyre szintén külön diagramok vannak.
A súrlódási tényezőt úgy is meg szokták határozni, hogy a csapágyterhelési számból kifejezik a relatív játékot és ezt helyettesítik a súrlódási szám összefüggésébe:

\[\psi = \sqrt{\phi} \sqrt{\frac{\eta_\omega}{P_k}} \] és \[\mu = \sqrt{\phi} \sqrt{\frac{\eta_\omega}{P_k} C(e, \varphi, b/d)} \]

A két jelölt függvényt egy betűvel felírva:

\[\mu = K(e, \varphi, b/d) \sqrt{\frac{\eta_\omega}{P_k}}, \] vagyis \[K = C \sqrt{\phi} \]

2.4.2. Hengeres radiális csapágyak melegedése

Üzem közben jelentős nagyságú súrlódási munka keletkezhet, amely hővé alakul. A kenőanyag belső súrlódása következtében keletkező veszteségteljesítmény:

\[N_s v \Rightarrow P P P P P P P \]

Ha a siklófelület hőmérséklete közel azonos a kenőrésből kifolyó olaj átlagos hőmérsékletével, akkor ez a csapágy üzemi hőmérséklete.

A csapágyban keletkező veszteségteljesítmény:

\[P_v = P_s = \mu \cdot F_N \cdot r \cdot \omega \]

A tengely hővezetésével elvitt hőmennyiséget (\(P_\text{el} \)) legtöbb esetben elhanyagolhatjuk. Általában a hőmennyiség 10..15\% -a megy el a csapágyból vezetés útján.

A sugárzással távozó hőmennyiség (\(P_{\text{sug}} \)):

\[P_{\text{sug}} = c \cdot A \left[\frac{T_\alpha^4}{100} - \frac{T_k^4}{100} \right], \]

ahol:

- \(A \) a csapágyház szabad külső sugárzőfelülete, m\(^2\)
- \(c \) a sugárzási tényező,
- \(T_\alpha \) a csapágyház külső felületének,
- \(T_k \) a környező testeknek az abszolút hőmérséklete, K

Az áramlásos hőcsere útján hőátadással (konvekció) távozó hőáram:

\[P_k = A \cdot \alpha(t-t_0) \quad \text{W}, \]

ahol:
A csapágyház külső sugárzó felülete:

\[A = \pi \cdot H \cdot (L + H/2), \]

ahol:
\(H \) a csapágyház magassága,
\(L \) a tengelyirányú hossza.

A hőátadási tényező:

\[\alpha = 6 + 10\sqrt{v}, \]

ahol:
\(v \) a levegő áramlási sebessége, értéke általában 0,5...1 m/s.

Ha a csapágyház felülete által elvezetett hőmennyiség nem elegendő, akkor mesterséges hűtésről kell gondoskodni. Erre alkalmazzák a kenőolaj cirkulációs hűtését, ahol szivattyúval keringetjük a kenőolajat. A központi kenésnél két esetet különbeztetünk meg:

a.) Ha az olaj túlnyomás nélküli lép be a csapágyba, ekkor az átfolyó olajmennyiség által elvitt hőmennyiség:

\[P_v = P_{ol} = Q \cdot \rho \cdot c(t - t_t) \]

ahol:
\(P_{ol} \) átfolyó olajmennyiség által elvitt hőmennyiség, W,
\(Q \) természetes olajszükséglet, mm³/s,
\(c \) az olaj fajlagos hőkapacitása J/g°C,
\(t \) a csapágy hőmérséklete, °C,
\(t_t \) az olaj tárolótartály hőmérséklete, °C,

továbbá

\[P_v = P_{ol} = P_t = \alpha \cdot A \cdot (t - t_0) \]

ahol:
\(t_0 \) környezeti hőmérséklet, °C.

b.) Ha a természetes olajmennyiség nem elegendő, akkor a többlet hűtőolaj-mennyiséget szivattyúval juttatjuk a csapágyba. A csapágy \(Q_t \) teljes olajszükségletére két részből áll: a Q természetes olajszükségletből és a túlnyomást igénylő \(Q_p \) mennyiségből:

\[Q_t = Q + Q_p, \] ebből \(Q_p = Q_t - Q \).
Qₜ a következő egyenletből számítható:

$$P_e = P_{ol} = (Q + Q_p) \cdot \rho \cdot c \cdot (t-t_i).$$

2.4.3. A csapágy olajszükségletének számítása

A hordozóképes olajfilm előállításához szükséges, hogy a csap és a persely közé legalább egy minimális olajmennyiség bejusson.

![Diagram](image)

2.17. ábra: Az olajfolyás számításához

A bevezetett kenőolaj a résből oldalirányban elfolyik. A z tengely irányú w sebesség (2.17. ábra):

$$w = \frac{1}{2} \frac{\partial p}{\partial z} (y^2 - hy).$$

A csapágy két végén elfolyó elemi olajmennyiség:

$$dQ = 2[w]_{z=b/2} r \cdot d\phi \cdot dy.$$

A levezetéseket mellőzve és felhasználva a $h = \Delta r (1-\varepsilon \cdot \cos \varphi)$ összefüggést:

$$Q = \frac{1}{4} d^3 \cos \psi \int_{\psi_1}^{\psi} c (1 - \varepsilon \cdot \cos \varphi)^3 F(\varepsilon, \varphi) d\varphi.$$

Csernavszkij szerint a statikusan terhelt álló csapágy esetére az olajtérfogat-áram:

$$Q = \psi \cdot \omega \cdot d^3 \cdot q_k,$$

ahol q_k az olajszükségletre vonatkozó tényező.

A túlnyomás által szállított olajmennyiség:
\[Q_p = \frac{\psi^3 \cdot d^3 \cdot p_0}{\eta \cdot b/d} q_p. \]

q_p tényező nagysága:
- körbenfutó hornyos persely esetén: \(q_p = \frac{\pi}{24} \left(1 + 1.5 \varepsilon^2 \right) \).
- úgynevezett táskás kialakítás esetén: \(q_p = k_2 + (b/d)^2 c/(d/b/a-2)k_3 \).

A \(k_2 \) és \(k_3 \) tényezők meghatározása diagramok alapján történik.

Hidrodinamikus hengeres csapágyak méretezésének menete

Szilárdsági szempontok

A csapágyazott tengelynél a csapátmérő (d) szabványos, b értéke pedig egész szám legyen. Ezekkel az adatokkal a tényeges \(p_k \) és \(b/d \) értéket meg lehet határozni, így a tengelycsap szilárdságilag ellenőrizhető.

A lehajlásból adódó deformáció:

\[f_1 = 2.5 \frac{p_k \cdot d}{E} \left(\frac{b}{d} \right)^4 \text{ mm}, \]

ahol:
- \(p_k \) a fajlagos csapágyhőmérséklet, MPa,
- \(E \) tengely anyag rugalmassági modulusa, MPa.

A nyírásból származó deformáció:

\[f_2 = 0.92 \frac{p_k \cdot b^2}{E \cdot d} \text{ mm}. \]

Beálló perselyű csapágynál:

\[f_3 = 0.6 \frac{p_k \cdot d}{E} \left(\frac{b}{d} \right)^4 \text{ mm}. \]

A tengely lehajlásakor jelentkező szöghelyzet:

\[q = \frac{b \cdot \tan \alpha}{d \cdot \psi}, \]

ahol:
- \(\alpha \) a hengeres tengelycsap és a csapágyfurat tengelyvonala által bezárt szög.

A lehajlás következtében létrejövő legnagyobb excentricitás és a közepes excentricitás között a közelítő összefüggés:

\[\varepsilon_{\text{max}} = q + \varepsilon_m, \]
ha \(q = 0 \), párhuzamos tengelyknél \(\varepsilon_{\text{max}} = \varepsilon_{\text{m}} \).

A \(\psi \) relatív csapágyjáték meghatározása

Ennek a tényezőnek a hatása a legjelentősebb a csapágy viselkedése szempontjából.

Vogelpohl szerint: \(\psi \approx 0.8 \cdot 10^{-3} \sqrt[3]{v} \).

<table>
<thead>
<tr>
<th>Jellemzők</th>
<th>(\psi) alsó értéke</th>
<th>(\psi) felső értéke</th>
</tr>
</thead>
<tbody>
<tr>
<td>A csapágy anyaga</td>
<td>lágy</td>
<td>kemény</td>
</tr>
<tr>
<td>Felületi terhelés</td>
<td>kicsi E (fehérfém)</td>
<td>nagy E (bronz)</td>
</tr>
<tr>
<td>Csapágyszélesség</td>
<td>viszonylag nagy</td>
<td>viszonylag kicsi</td>
</tr>
<tr>
<td>Megtámasztás jellege</td>
<td>(b/d \leq 0.8)</td>
<td>(b/d \geq 0.8)</td>
</tr>
<tr>
<td>A terhelés módja</td>
<td>önbeálló</td>
<td>merev</td>
</tr>
<tr>
<td></td>
<td>forgó</td>
<td>álló</td>
</tr>
</tbody>
</table>

2.1. táblázat: *A \(\psi \) relatív játék alsó és felső határai*

A 20 °C-on megvalósítandó csapágyjáték egy S tényező segítségével számítható, ahol S a persely anyagától és beépítési helyétől függ:

\[
\psi_{20} = +S(t - 20°C) \cdot 10^{-6}.
\]

Az S tényező értékeit táblázat tartalmazza.

A felületi érdesség hatása

A tervezésnél célszerű minimális résmétre törekedni, ennek egyik korlátját a felületek érdessége adja. Az általános gépépítésben célszerű, ha a tengelycsap érdessége \(R_a \leq 0.05\sqrt{d} \) \(\mu \)m, ahol \(d \) mm – ben helyettesíthető.

a.) Kis terhelésű csapágyakra: \(R_a = 0.32…1.25 \) (\(\mu \)m).

b.) Nagyobb terhelésű és futáspontos csapágyakra: \(R_a = 0.16…0.32 \) (\(\mu \)m).

A legkisebb résméret értéke beálló perselyű csapágyaknál: \(h_0 = (R_{1\text{max}} + R_{2\text{max}} + R_3)x \).

A legkisebb résméret értéke merev perselyű csapágyaknál, a deformációkat is figyelembe véve: \(h_0 = (R_{1\text{max}} + R_{2\text{max}} + f_1 + f_2)x \).

Az \(x \) tényező helyes felvétele a megfelelő üzembiztonság érdekében fontos:

- kisméretű és kis terhelésű gépeknél: 1,2…1,5…3.
- nagyméretű ágyazásoknál: 2…4.

www.tankonyvtar.hu © Rácz Péter, SZE
A relatív excentricitás hatása

Értékét célszerű \(\varepsilon_{\min} = 0.6 \) és \(\varepsilon_{\max} = 0.95 \) között tartani. Kis terhelés esetén \(\varepsilon \approx 0.6 \), míg nagy terhelés esetén \(\varepsilon \approx 0.7 \) kényszerolajozás esetén. Szokásos a csapágyterhelési szám korlátozása is 0,8 < \(\Phi \) < 10 határ között, ami kb. az \(\varepsilon \) korlátozásának felel meg.

A tiszta folyadéksúrlódás megvalósítása

A gyakori indítású gépek siklócsapágyainál lényeges az átmeneti és a tiszta folyadéksúrlódás határához tartozó fordulatszám.

Meghatározása:

\[
 n_h = \frac{1}{2\pi} \omega_h = \frac{1}{2\pi} \frac{p_k \cdot \psi^2}{\eta_h \cdot \varphi_h}.
\]

A Vogelpohl által levezetett összefüggéssel a határfordulatszám gyorsan meghatározható:

\[
 n_h = \frac{F}{C_h \cdot \eta \cdot V}.
\]

Az \(n_h \) 1/min – ben adódik, ha \(\eta \) – T MPa·s – ban, a térfogatot dm³ – ben helyettesítjük. A C_h tényleg megfelelő kivitel és b/d = 0,5..1,5 közötti érték esetén 1 – nek vehető.

El kell végezni az ellenőrzést a tűréses szölsőértékeire is. A kenőképes olajfilm kialakulása szempontjából a lehetséges legnagyobb játként a veszélyes, a melegedés szempontjából pedig a legkisebb játek. Ezért a J_{min} – ra való ellenőrzéskor a közepes játkének számításaakor kiadódott t üzem hőmérsékletnél 3...5 °C – kal nagyobb t’, J_{max} – nál pedig 3...5 °C – kal kisebb t’’ csapágyhőmérséklet felvétele a célszerű.

Több hordozófelületű hengeres siklócsapágyak

Ezeknek a megoldásoknak nagy előnye a rezgések kiküszöbölése, a nagyobb futáspontosság, a terhelhetőség tág határok közötti változtathatósága, nyugodt, zajtalannabb járás és emellett a tiszta folyadéksúrlódás kialakulása. Hátrányuk a perselynek és ezzel a csapágyszerkezetnek a többnyire költséges előállítása, valamint a súrlódási ellenállás nagyobb értéke és az ebből adódó nagyobb hőfejlődés, melegedés.

Ha a tengelycsap rezgése az üzemben viszonyok következtében változhat, akkor az ún. citrom furatú csapágy is megfelel. A több hordozófelületű csapágyak típusai közül legkönnyebben a „citrom” furatú persely gyártatható. Ennek a típusnak a méretezése a keménymélet alapján csak közelítőleg végezhető el.

2.4.4. Változó terhelésű és fordulatszámú hidrodinamikus radiális csapágyak

Két esetről beszélhetünk, az egyik, ha a csapágy terhelése állandó és a csap fordulatszámánál változik. Ez a feltételezés az esetek jó részében a valóságot jól közelíti. A másik eset, ha a csap terhelés nagysága és iránya is állandóan változik, sőt legáltalánosabb esetben nemcsak a csap, hanem a persely forgásával is kell számolni. Minden mozgásvariáció visszavezethető arra az esetre, amikor csak a tengelycsap forog.
Feltétlen szükséges bizonyos csapágytípusoknál a mozgásviszonyok vizsgálata. Különösen fontos ez pl. belsőégésű motorok, dugattyús légsűrítők esetén. A változó terhelésű síklócsapágy esetén a csap középpontjának gyors sugárirányú mozgása következtében a kiszorító hatás miatt olyan nyomáseloszlás áll elő a kenőrésben, amely igen nagy terhelést tud felvenni, pl. dugattyúcsapszeg.

A csapágyterhelési szám általános forgó mozgás esetén:

\[\phi = \frac{F}{b \cdot d \cdot \eta \cdot \omega_e} \]

a kiszorító hatás következtében:

\[\phi_v = \frac{F}{b \cdot d \cdot \eta \cdot \frac{de}{dt}} \]

Instacionárius terhelésű síklócsapágy kenőrétegénének nyomásfüggvénye:

\[\frac{\partial}{\partial x} \left[h^3 \frac{\partial p}{\partial x} \right] + \frac{\partial}{\partial z} \left[h^3 \frac{\partial p}{\partial z} \right] - 6\eta(u_1 + u_2) \frac{\partial h}{\partial x} - 12\eta \frac{\partial h}{\partial t} = 0 \]

A differenciálegyenlet megoldása során kétszeres integrálással a nyomásfüggvényt, a harmadik integrálás után terhelésfüggvényt kapjuk a csapeterhelési szám alakjában.

2.4.5. Hidrodinamikus axiális csapágyak elmélete és méretezése

A szűkülő részeknél a csapágytípusoknál a tengelytárcsa vagy a gyűrű célszerű kialakításával érhető el. Ilyen réskialakításokat az alábbi szerkezeti megondolásokkal érhetünk el:

- merev, megmunkálással előállított szegmensekkel,
- beállítható vagy pedig magától beálló billenő szegmensekkel,
- az álló gyűrűben kialakított deformálódó futófelületekkel.

Az elméleti megfontolások egy szegmensekből összeállított talpcsapágy egyik ferde síklapú, vég الت عه szél esnek feltételezett síklósarujára érvényesek.
2.18. ábra: A sebességeloszlás végállás széles saru esetén

A résméret egyenlete (2.18. ábra):

\[h = h_0 + mx, \text{ ahol } m = \tan \beta = \frac{t}{l} = \frac{h_1 - h_0}{l}. \]

A ferde síklapra az \(y = 0, u = -U \) és \(y = h, u = 0 \) peremfeltételek mellett a sebességfüggvény:

\[
u = \frac{3U}{h^3} \left(2 \frac{h_1 h_0}{h_1 + h_0} - h \right) \left(y^2 - yh \right) + U \left(\frac{y}{h} - 1 \right).
\]

A nyomásfüggvény:

\[p = \frac{6\eta U}{m} \left(1 - \frac{1}{2} \frac{h^*}{h_0^2} \right) + C_2. \]

\(x = 0 \) helyen \(h = h_0 \), így

\[C_2 = \frac{6\eta U}{m} \left(1 - \frac{1}{2} \frac{h^*}{h_0^2} - \frac{1}{h_0} \right). \]

Célszerű dimenzió nélküli számokat bevezetni:

\[\zeta = \frac{x}{l} \quad \text{és} \quad a = \frac{h_0}{h_1 - h_0} = \frac{h_0}{t} = \frac{1}{a'} . \]
Így a nyomásfüggvény:

\[p = \frac{6\eta Ul}{h_0^2} \cdot \frac{a^2(1-\xi)^2}{(1+2a(a+\xi))^2} = \frac{6\eta Ul}{h_0^2} K_p. \]

Lépcsős rés esete: \(x_1 \) szakaszra \(x_2 \) szakaszra

\[h = h_0 \quad h = h_1 \]

Ék alakú rés esete:

\[h = h_0 \quad h = h_0 + mx \]

Ívelt rés esete:

\[h = h_0 \quad h = h_0 + (h_1 - h_0) \cdot (x_2/l')^2 \]

A síklap terhelhetősége, ha a szélességet \(b \) – vel jelöljük, a nyomást a szélesség mentén állandónak tekintjük, továbbá \(m = \frac{h_1 - h_0}{l} \),

\[F_{ax} = b \int_{x=0}^{x=l} p(x)dx = b \int_{h=h_0}^{h=h_1} \frac{1}{m} p(h)dh. \]

\[F_{ax} = \frac{6\eta Ul^2}{h_0^2} K_p. \]

A kenőrésben a közepes olajnyomás:

\[p_k = \frac{F_{ax}}{b \cdot l} = \frac{1}{l} \int_{x=0}^{x=l} p(x)dx = \frac{6\eta Ul}{h_0^2} K_p. \]

A kenőolaj térfogatárama:

\[Q = b \left(- \frac{1}{12\eta} \frac{dp}{dh} \frac{h_1 - h_0}{l} h^3 - \frac{1}{2} Uh \right), \]

ahol

\[\frac{dp}{dh} \frac{h_1 - h_0}{l} = \frac{dp}{dx}. \]

Az elemi súrlódási erő nagysága:

\[F_s = \frac{bhl}{h_0} \left[\frac{4}{a'} \ln(a'+1) - \frac{6}{a'+2} \right]. \]
A súrlódási tényező nagysága:

\[
\mu = \frac{F_s}{F_{ax}} = \frac{h_0}{6l} \left(4 \ln(a') + \frac{6}{a' + 2} - \frac{2}{a'(a' + 2)} \right) = \frac{h_0}{6l} f(a').
\]

A Schiebel féle levezetés szerint a siklósaru terhelhetősége:

\[
F_{ax} = \frac{5}{6} \frac{F_{ax}}{1 + m(l/b)^2},
\]

Az m a kenőrés geometriai viszonyától függő szorzó. A közepeles nyomásra a következő alakot vezette le:

\[
p_k = 5 \frac{\eta U l}{h_0^2} \frac{1}{1 + m(l/b)^2} a^2 \left(\ln \left(\frac{1 + a}{a} \right) - \frac{2}{1 + 2a} \right)
\]

Mivel az axiális és radiális csapágy nyomásszólását ugyanaz a differenciálegyenlet írja le, ezért mindkét csapágytípus terhelhetőségét megadó összefüggések között szoros hasonlóság áll fent. Ezért a számítási eljárás is azonos mindkét típus esetére.

Axiális csapágyaknál a legszűkebb résméret \((h_{0\text{min}})\) Drescher javaslata szerint:

\[
h_{0\text{min}} = (5 \cdot 10^{-3} ... 15 \cdot 10^{-3}) \left(1\text{mm} + \frac{d_k}{400} \right).
\]

A szükséges legkisebb résméret:

\[
h_{0\text{szűk}} = (1,2...1,5)h_{0\text{min}} \quad \text{ill.} \quad \delta_{\text{szűk}} = h_{0\text{szűk}}/h_1.
\]

A hidrodinamikus axiális csapágyak méretezésekor diagramból keresendő ki egy adott \(b/l\) és egy \(h_0/t\) viszonyhoz a \(p_k h_0^2/\eta U b = k_1\) érték. A szegmensek közötti kenőhornyok területét figyelme vevő tényező: \(\varphi = \frac{z l}{\pi d_k} = \frac{2 z l}{d_1 - d_0}\), ahol \(z\) a szegmensek száma.

A tényleges közepeles nyomás:

\[
p_k = \frac{F_{ax}}{z b l} = \frac{F_{ax}}{\varphi \pi d_k b}.
\]

A legkisebb résméret így:
\[h_0 = \sqrt{\frac{k_1 zb^2 \eta U}{F_{av}}} \]

Továbbá meg kell határozni a súrlódási veszteséget, ahova a súrlódási tényleg ismerete kell:

\[\mu \frac{p_1 b}{\eta U} = k_2 \quad \text{és ebből} \quad \mu = k_2 \frac{\eta U}{p_1 b} = k_2 \frac{\eta Uzl}{F_{av}}. \]

Ezzel a súrlódási veszteségteljesítmény:

\[P_s = \mu F_{av} U = k_2 \sqrt{\eta U^3 \rho \pi d_k F_{av}}. \]

Az olajszükséglet nagysága:

\[Q = b U h_0 \frac{1 + a'}{2 + a'} = U b h_0 q_0. \]

A \(q_0(a') \) függvény diagramalakban áll rendelkezésre. A teljes \(z \) számú szegmenshez tartozó olajszükséglet:

\[Q = q_0 z b U h_0. \]

A csapágy a szokásos módon ellenőrizendő melegedésre is.

2.5. Hidrosztatikus csapágyak elmélete

2.5.1. Hidrosztatikus radiális siklócsapágyak

Itt a nyomással bevezetett kenőanyag választja szét a felületeket, ennek a módszernek a gazdaságos alkalmazása az alábbi esetekben lehetséges:

- a.) Nagy pontosságú szerszámgépek és műszerek esetén, kis súrlódás és nagy merevség céljából.
- b.) Ahol a gördülőcsapágy drágább, viszont a siklócsapágy segédberendezéseinek költségei nem nagyok.
- c.) Kis súrlódás elérése esetén, ha gördülőcsapágy és hidrodinamikus csapágy nem alkalmazható.

A hidrosztatikus csapágy súrlódási állapotát úgy vizsgáljuk, hogy párhuzamos sík siklófelületeket veszünk fel.
A nyomásfüggvény a nyomásfüggvény differenciál egyenletének kétszeres integrálásából adódik (2.19. ábra):

\[p = \frac{C_1}{h^3} x + C_2. \]

A sebességeloszlás nagysága:

\[u = \frac{1}{2\eta} \frac{P_0}{a} \left(y^2 - h^2 \right) - U \left(\frac{y}{h} - 1 \right). \]

A mozgó sík felület egységnyi szélességű felületére ható súrlódási erő:

\[F_{sl} = d \tau_{xz} |_{z=0} = \eta a U - \frac{P_0 h}{2}. \]

Egységnyi szélességen átáramoltatott kenőanyag mennyiség:

\[q_i = \int_0^h u dy = \frac{U h}{2} \frac{h^3 P_0}{12 \eta a}. \]

Tehát az egész teljesítményszükséglet:

\[P_s = F_{si} U + P_0 q_i = \frac{\eta U^2 a}{h} + \frac{P_0^2 h^3}{12 \eta a}. \]

Hengeres hidrosztatikus csapágyak esetén keskeny perselyt kis fordulatszámú, aránylag nagy terhelésű csapágyak esetében célszerű készíteni, kerületi irányú nyomókamrával. Ekkor a külső terhelés:
\[F = \int_{-\phi_1}^{\phi_1} (a + c) R d\phi_0 \cos\phi = 2(a + c) R p_0 \sin \phi_1. \]

A tengelyirányban kifolyó olajmennyiség:

\[dq = 2R d\phi_0 \frac{p_0 h^3}{12\eta c} \approx \frac{r^4}{r^3} p_0 \sqrt{1 - \varepsilon \cos \phi_0}^3 d\phi. \]

Széles csapágyak esetén a nyomókamrát tengelyirányban lehet elhelyezni. A tengelyirányú sebességet zérusnak véve, az átáramló olaj mennyisége:

\[q = 2h \frac{h^3 dp}{12\eta c}. \]

A nyomás függvény:

\[p_0 = \frac{1}{2} \frac{\eta q}{r^2} B(\varepsilon), \]

ahol a \(B(\varepsilon) \) függvénykapcsolat ismert és az értékek diagramból leolvashatók.

A külső terhelés nagysága:

\[F = 2 \int_{\phi=0}^{\varepsilon^2} p(\phi) r l \cos \phi d\phi. \]

Keskeny tömítőperemes hengeres siklöfelületeket gyakran készítenek hidrosztatikus csapágypersely – szerkezetek kialakításakor.

Ebben az esetben a terhelés nagysága:

\[F = p_0 b'd' = p_0 b'2r \sin \phi/2. \]

Az átfolyó olajmennyiség 1 cm szélességen:

\[q_1 = -\frac{1}{12\eta} \frac{dp}{dx} h^3. \]

A teljes olajveszteség a tömítőperem középvonalának hosszúságán:

\[q = \frac{(b' + r\phi)p_0 h^3}{6\eta c}. \]
A szivattyúteljesítmény:

\[P = q_0 p_0 = \frac{(b' + r\phi)p_0^2 h^3}{6\eta c} . \]

A súrlódási ellenállás:

\[F_s = \tau \cdot A = \eta \frac{du}{dh} A = \eta \frac{r\omega}{h} 2(b' + r\phi)c , \]

ahol \(A \) a tömítőperem felülete.

A súrlódási teljesítmény:

\[P_s = F_s r\omega = \frac{2\eta r^2 \omega^2}{h}(b' + r\phi)c . \]

Így a csapágyteljesítmény:

\[P_{sz} = P + P_s = \frac{p_0^2 h^3}{6\eta c} (b' + r\phi) + \frac{\eta r^2 \omega^2}{h} 2(b' + r\phi)c . \]

Bevezetve a veszteségnyomaték fogalmát:

\[T = \frac{P_{sz}}{\omega} . \]

A résméret szerinti optimumhoz tartozó veszteségnyomaték:

\[T_h = \frac{4}{3} \frac{b'/r + \phi}{b'/r \sin \phi/2} . \]

2.5.2. Hidrosztatikus axiális siklácsapágyak

Párhuzamos felületek között folyadéksúrlódási állapotot csak úgy tudunk létrehozni, ha megfelelő mennyiségű és nyomású olajat táplálunk a felületek közé. Az alábbi ábrán erre látható egy példa, ahol a tengely irányában furaton keresztül jut be az olaj a kenőtáskába.
2.20. ábra: Egy hidroszstatikus axiális csapágy kivitele

Ha kellő mennyiségű olajat sajtolunk be, akkor a felületek szétválnak és \(h_0 \) résméret alakul ki. Vizsgálatunknál tételezzük fel először, hogy a csap nem forog, azaz \(U = 0 \), ekkor a sugárirányú sebesség (2.20. ábra):

\[
w = \frac{1}{2\eta} \frac{dp}{dr} (y^2 - h_y),
\]

amelyből egy \(r \) sugarú kör mentén kifolyó olaj mennyisége:

\[
Q = 2\pi \int_{y=0}^{h} w dy = 2\pi \frac{1}{2\eta} \frac{dp}{dr} \int_{0}^{h} (y^2 - h_y) dy = -\frac{1}{6\pi} \frac{h^3}{\eta} \frac{dp}{dr}.
\]

A nyomásfüggvény:

\[
p = -\frac{6\eta Q}{\pi h^3} \ln \frac{r_i}{r}.
\]

A kenőpárnában a belső nyomás \(r = r_0 \) helyen legyen \(p_0 \) ekkor:
\[p_0 = \frac{6\eta Q}{\pi h^3} \ln \frac{r_1}{r_0}, \]

A két nyomásfüggvényt egymással elosztva:

\[p = p_0 \frac{\ln \frac{r_1}{r}}{\ln \frac{r_1}{r_0}}. \]

A tengelyirányú erő nagysága:

\[F_{ax} = \frac{3\eta Q}{h^3} \left(r_1^2 - r_0^2 \right), \quad \text{ill.} \quad Q = \frac{F_{ax} h^3}{3\eta (r_1^2 - r_0^2)}. \]

A súrlódási erő nagysága:

\[F_s = \int r dA = \int_{r_0}^r \eta \omega \frac{r_0}{h} 2\pi r dr = \frac{2\pi \eta \omega}{3h} \left(r_1^3 - r_0^3 \right). \]

A súrlódási nyomaték:

\[T_s = \int 2r \pi \omega dr = \int_{r_0}^r \frac{\eta \omega 2\pi}{h} r^3 dr = \frac{\pi \eta \omega}{2} \left(r_1^4 - r_0^4 \right). \]

A súrlósási tényező:

\[\mu = \frac{F_s}{F_{ax}} = \frac{\frac{2\pi \eta \omega}{3h} \left(r_1^3 - r_0^3 \right)}{\frac{3\eta Q}{h^3} \left(r_1^2 - r_0^2 \right)} = \frac{2\pi \omega h^2}{9 Q} \frac{r_1^3 - r_0^3}{r_1^2 - r_0^2}. \]

A súrlódási teljesítmény:

\[P_s = T_s \omega = \frac{\pi \eta \omega^2}{2h} \left(r_1^4 - r_0^4 \right). \]

A szivattyú teljesítményszükséglete:

\[P_{szv} = p_0 Q = \frac{2F_{ax}}{(r_1^2 - r_0^2)^2} \frac{F_{ax} h^3}{3\eta (r_1^2 - r_0^2)} = \frac{2F_{ax} h^3}{3\pi \eta} \frac{\ln \frac{r_1}{r_0}}{\left(r_1^2 - r_0^2 \right)^2}. \]

Az együttes teljesítményigény:
\[P = P_0 + P_{\text{acv}}. \]

Az eddigiekben azt feltételeztük, hogy a két siklófelület nem mozdul el egymáshoz képest \(u = 0 \). A valóságban viszont a relatív elmozdulás befolyásolja az összefüggéseket.

2.6. Siklócsapágyak anyagai

2.6.1. A csapágyházak, tengely és tengelycsapok anyaga

Csapágyházaknál az öntöttvas vagy acélöntvény különböző minősége jön számításba. Kisebb szilárdsági követelmény esetén könnyűfémől, alumínium ötvözetből is gyártthatóak. Egyedi kialakítás esetén hegesztett acélházak gyártása is indokolt.

A csap a tengely megfelelően kialakított része, hajlítást, csavarást, vagy összetett igénybevételt szolgál. Kísér nózsepe terhelés esetén a szénacélok, míg nagy terhelésnél nagy szilárdságot ötvöző acélok jöhetnek számításba. Ötvözők lehetnek a nikkel, a króm. A csap felületét a követelményeknek megfelelően simának munkálják, köszörülik vagy tükrösítik, a kopásállóság növelésére felületi keményítő eljárásokat írnak elő, esetleg a kitárolási határ növelése céljából a felület görgőzése is szokásos.

2.6.2. A csapágyanyagokkal szemben támasztott követelmények

A csapágyanyagokkal szemben választható követelmények:

- jó síklási tulajdonságok,
- alakíthatóság,
- bágyazó képesség,
- hővezető képesség,
- szilárdsági követelmények: nyomószilárdság, fáradás bírás szempontjából helyes, konstrukció kialakítás,
- korрозióvé való szembeni ellenállás,
- technológiai tulajdonságok: az anyag jól öntethető és megmunkálható legyen.

A nagyobb szilárdságot és keménységértő ötvözeteket belével nélkül is lehet használni, ezek a csapágypersely ötvözetek.

2.6.3. Csapágypersely és csapágy-bélés anyagok

Csapágyperselyek gyártásához a leggyakrabban a következő anyagok használatosak:

- önbronzok,
- vörösötvözetek,
- alúmniumbronzok,
- alumínium csapágyötvözetek,
- különleges sárgarecek,
- öntöttvas,
- szinterfémek, porfémőből gyártott csapágyfémek,
- műanyag csapágypersely anyagok:
 - műgyanta alapú vázanyaggal erősített, hőre keményedő műanyagok,
 - poliamidok, hőre lágyuló nagy molekulasülyú polímer anyagok,
 - teflonok,
 - gumi,
 - müszén,
 - üveg, finomkerámiai anyag
 - fa.
Csapágy-bélés ötvözeteknek nevezzük azokat a kis szilárdságú anyagokat, amelyeket csak nagy szilárdságú csapágycsőbéle betésként lehet alkalmazni. Leggyakrabban alkalmazott anyagfajták:
- ónalapú csapágyfémek,
- ólomalapú csapágyfémek,
- ólombronzok,
- kadmiumötvözetek,
- horganyalapú csapágyfémötvözetek.

2.7. Siklócsapágyak szerkezeti kialakítása

2.7.1. Radiális csapágyak persely és szerkezet kialakítása

A siklócsapágy leglényegesebb része a persely, amely érintkezik a forgó tengelycsappal, azt megtámasztja és gondoskodik az olaj hozzávezetéséről és szétosztásáról. Az élen való fölfekvés elkerülésére beálló perselyt kell alkalmazni.

2.21. ábra: Beálló gömbfelületű persely

A persely 8-10° szögelfordulást tud felvenni és kismértékű tengelyirányú terheléssel is terhelhető. Készülhet osztott és osztatlan kivitelben. A házba fixen beépített perselyek készülhetnek egy anyagból, de a támasztópersely bélésfémmel van kiöntve.

A merev perselynél gondoskodni kell az elfordulás elleni biztosításról és az olajelosztásról. Szokásos módszer a csapágyfedél és a persely közé behelyezett rövid csődarab vagy hengeres szeg is.

Ha két anyag alkotja a perselyt, lényeges feladat a bélésfém és a támasztócsésze megbízható kötését elérni. A bélést öntéssel viszik fel. A bélésfém és a támasztócsésze között alakzáró kötés, vagy anyagzáró kötés alkalmazása lehetséges. Néhány mikrométer vastagság esetén elektrolitikus bevonás alkalmazható.

A bronzpersely vastagsága bélésfém nélküli perselyeknél: \(v = 0,04d + 4 \text{ mm} \) (d a furat átmérő).

© Rácz Péter, SZE

www.tankonyvtar.hu
A csapágycsésze vastagsága (d_b a csésze belső átmérője):

$v_1 = 0,12d_b$ acél, acélöntés és bronz esetén,
$v_1 = 0,12...0,24d_b$ öntöttvas esetén.

2.22. ábra: A persely siklófelületének kialakítása

A radiális csapágyak szerkezeti kialakítását tekintve a következő szempontok szerint csoportosíthatóak:

1.) Megtámasztásuk és megfogásuk alapján:
 - állócsapágy,
 - függőcsapágy,
 - falicsapágy vagy konzolos csapágy.

2.) A szerelés módja szerint:
 - osztatlan, tengelyirányban szerelhető,
 - osztott, sugárirányban szerelhető.

3.) Persely kialakítás alapján:
 - merev,
 - beálló.

4.) Alkalmazási cél szerint:
 - általános gépépítés csapágyai,
 - meghatározott feladatot megoldó csapágyak.

2.7.2. Osztatlan vagy szemcsapágyak

Zsírkenésre, kis fordulatszámra használatos a bronzperselyes csapágy. A perselyt akadó - vagy kötöllesztéssel erősítik a csapágyház öntvénybe (2.23.a ábra). Lemezszerkezet esetén,
emelőgépekben használható a csavarral félerősíthető peremes szemcsapágy bronzpersellyel vagy anélkül is öntöttvas házzal (2.23.b ábra). A szemcsapágyak egyszerű és olcsó kivitelűek, de kopás esetén a perselyt cserélni kell.

2.23. ábra: Szemcsapágyak

A szemcsapágyhoz hasonló a peremes vagy pajzscsapágy. Osztatlan kivitelű, villamos motork csapágyazására használják.

Szerszámépek főorsóinak ágyazására is alkalmasak az osztatlan csapágyak. Ide általában utánállítható, hengeres furatú és kúpos palástú megoldást terveznek.

2.7.3. Osztott, merev perselyű csapágyak

Két fő típus létezik: merev perselyű és beálló perselyű. Mindegyik létezik csepegtető kenéssel, gyűrűs kenéssel és központi olajozással.
2.24. ábra: Álló, osztott, merev perselyű csapágy

2.7.4. Osztott, beálló perselyű csapágyak

Előfordulhat, hogy a csapágypersely és a tengelycsap hossztengelye egymással szöget zár be. Ekkor az élelfelfekvés miatt a szélén megszűnhet a folyadéksúrlódás. Ha élelfelfekvés nem is következik be, akkor is megváltozik a nyomásszeoszlás. Ez úgy kerülhető el, hogy a perselyt beállási lehetőséggel tervezik meg. Ez azt jelenti, hogy a perselyeken felül és alul a tengely középpontjából húzott sugárral gömbfelületet alakítunk ki, ez megengedi a persely beállását.

Példaként említhetők az egyszerű fehérfém bélésű, csepegtető kenő, beálló perselyű csapágyak. Létezik olyan megoldásuk is ahol fogaskerék-szivattyú szállítja a szükséges kenőolaj mennyiségét.

2.7.5. Belsőégésű motor-csapágy

Általában kétféle perselytípus van, az egyik, ahol az aránylag vastag acélszélsőbe öntik bele a bélésfém. A másik kivitelnél igen vékony acéllemezz hordja fel a siklófelületet adó csapágyfém, ez a lemezpersely.
2. SIKLÓÁGYAZÁSOK

2.25. ábra: Belsőégésű motor főcsapágya

A 2.25. ábra álló elrendezésű motorcsapágyat szemléltet.

A persely vastag acélszeszhől és ebben egy vagy több rétegű bélésfémömből áll. A bélésfém anyaga a dizelmotorok esetében ólombronz. A sokrétű követelmények kielégítésére szolgálnak a többrétegű csapágyperselyek.

Benzinüzemű motorok esetében használatos a lemezpersely. A könnyűfém futófelületű kivitelnél a lemezre hengerléssel plattírozott alumínium ötvözetet visznek fel.

2.7.6. Vasútijármű-csapágy

Vasúti kocsik, mozdonyok csapágyazására használják az Isothermos típusú csapágyat. Az olajat a tengelyvégen lévő szórókar szállítja. A kenés igen jó, üzemé nyugodt. 120 km/h sebességnél az üzem hőmérséklet 50-60 °C-kal nagyobb a környezetinél. A tervezésnél szokásos jellemzők: b/d = 1,2...1,5, p = 4 N/mm².

Mára viszont a siklóágyazások háttérbe szorultak a vasúti üzemben.

2.7.7. Önkenő csapágyak

A kenőanyag közvetlenül a súrlódó elemek egyikéből jut az elmozduló felületek közé. Három típus különböztethető meg:
- műanyag persely töltő kenőanyaggal,
- műanyag-bronz persely kenőanyaggal töltött bemunkálásokkal,
- olajjal itatott szinterfém persely.

© Rácz Péter, SZE www.tankonyvtar.hu
2.26. ábra: Porfém perselyek beépítése

2.7.8. Műanyag perselyű csapágy

Két változat lehetséges: vagy tömör műanyag persely készítünk, vagy fémperselybe műanyag föliát mint belést használunk.

2.27. ábra: Műanyag persely rugalmas alakváltozása

Méretezésekor ha feltételezzük, hogy a tengelycsap és a fémház merev, az F terhelés a műanyag perselyt $2\varphi_1$ középponti szöghöz tartozó ívhossz mentén deformálja (2.27. ábra):

$$\Delta s(\varphi) \approx e \cdot \cos \varphi - \Delta r = \Delta r (e \cdot \cos \varphi - 1)$$

A nyomásfüggvény:

$$p(\varphi) = \frac{\Delta s}{s} \frac{E}{s} = \frac{\Delta r}{s} (e \cdot \cos \varphi - 1)E.$$
2. SIKLÓÁGYAZÁSOK

A legnagyobb nyomás:

\[p_{\text{max}} = \frac{\Delta r}{s} E (\varepsilon - 1) \]
ahol \((\varphi=0)\).

A felfekvéshez tartozó középponti szög:

\[\varphi_1 \approx \arccos \frac{\Delta r}{e} = \arccos \frac{1}{\varepsilon}. \]

A felületi terhelés:

\[p = \frac{F}{b \cdot d} = \frac{\Delta r}{2s} E \left(\varepsilon \cdot \arccos \frac{1}{\varepsilon} - \sqrt{1 - \frac{1}{\varepsilon^2}} \right), \]

\[\varepsilon_{\text{meg}} = \frac{s}{\Delta r} \frac{p_{\text{meg}}}{E} + 1. \]

A megengedhető csapágyterhelés:

\[F_{\text{meg}} = b \cdot d \cdot p_{\text{meg}} = b \cdot d \frac{\Delta r}{2s} E \left(\varepsilon_{\text{meg}} \cdot \arccos \frac{1}{\varepsilon_{\text{meg}}} - \sqrt{1 - \frac{1}{\varepsilon_{\text{meg}}^2}} \right). \]

2.8. Néhány hidrodinamikus axiális csapágyszerkezet

A legtöbb esetben az axiális megtámasztás mellett a tengelyt radiális irányban is vezetni kell. A 2.28. ábra ilyen szerkezetet szemlélteit.

![Diagram](https://www.tankonyvtar.hu)
A tengely végén van a függesztett axiális megfogás, a csapágyház harangalakszerű kiképzése miatt nevezik a konstrukciót harangcsapágynak is. Függőleges tengelyelrendezés vízturbinák, villamos generátorok, vízszivattyúk esetén szokásos.
3. GÖRDÜLŐCSAPÁGYAK

A gördülőcsapágy az egyik leggyakrabban alkalmazott gépelem, ami szinte valamennyi forgómozgást végző gép és berendezés nélkülözhetetlen alkatrészé. A különböző szerkezeti kialakítású gördülőcsapágyakat a XIX. század második felében, illetve az 1900-as évek elején fejlesztették ki. Általános elterjedésük azonban csak a gördülőcsapágy-gyártó üzemek kialakulásával indulhatott meg, amikor is a gördülőcsapágyakat jó minőségű és nagy tisztaságú anyagból, nagy pontossággal kezdték gyártani, biztosítva ezzel a terhelés alatti elmozdulás legkedvezőbb feltételeit.

3.1. A gördülőcsapágy feladata és tulajdonságai

A gördülőcsapágy relatív mozgást lehetővé tevő szerkezet, mely forgó vagy lengő mozgást végző, erőátvitelt biztosító alkatrészek, pl. tengelyek, csapok megtámasztására, vezetésére szolgál.

A gördülőcsapágyak tulajdonságai:
- terhelésátadást gördülőmozgással végzik, belső sürlődásuk kicsi, a gördülő ellenállásuk gyakorlatilag a fordulatszámtól független,
- kis sürlődás miatt egyszerű és kismértékű a kenésigényük,
- forgásértelmük tetszőleges,
- karbantartási igényük kicsi,
- nemzetközileg szabványosított, kereskedelmi áruként gyorsan pótolható, cserélhető gépelemek,
- dinamikus hatásokra érzékenyek,
- szinte kizárólag osztatlan kivitelűek, ezért alkalmazásuk korlátozott,
- szilárdszennyeződésre (por-, fémszemcse) érzékenyek,
- rezgéseltő hatásra érzékenyek és a változó terhelések miatt zajosak.

3.2. Görödülőcsapágyak szerkezeti kialakítása

3.1. ábra: Az egysorú mélyhornyú golyóscsapágy szerelése

Szerelés előtt a csapágyalkatrészeket méret szerint összeválogatják, így pl. egy csapágyon belül a gördülőelemek átmérője közötti különbség az úgynevezett csoporttűrés nem lehet nagyobb, mint 0,2 μm. A szerelés módja a csapágy szerkezeti kialakításától függ. A 3.1. ábra példaképpen egysorú, mélyhornyú golyócsapágy szerelését mutatja be. A szerelés után a csapágyakat demagnetizálni kell, mert a mágnesség vonzana a vaskopadékot, ez pedig a csapágy idő előtti tönkremenetelét okozná. A gördülőcsapágyak általában zsírkenésűek, ritkábban olajkenésűek.

3.2. ábra: Az egysorú mélyhornyú golyócsapágy geometriai kialakítása

Egy mélyhornyú golyócsapágy geometriai kialakítását és jellemző belső méreteit a 3.2. ábra mutatja. A csapágy közép- vagy osztókörátmérője a gördülőpálya-átmérők számítani közepe, ami jó közelítéssel a furat-, illetve palástátmérőből is számítható:

\[D_m = 0.5(D_p+d_p) \approx 0.5(D+d) \]

A külső és belső gördülőpálya, valamint a gördülőelem között értelmezhető a gördülőpálya és a gördülő elem simulása:

\[f_k = r_k/d_g \quad \text{és} \quad f_b = r_b/d_g \]

Mélyhornyú golyócsapágyak esetében általában \(f_k = f_b = 0.51-0.52 \).
Fontos geometriai jellemző a csapágy radiális hézaga, ami szintén a geometriai méretekből számítható:

\[
H_r = D_p - dp - 2dg
\]

A csapágyak további fontos jellemzője az úgynevezett hatásvonal, amely az az egyenes, amelynek irányában a gördülőelem az erőt az egyik gyűrűről a másikra átviszi. A hatásvonal és a csapágy forgástengelyére merőleges sík által bezárt szög a hatásszög.

A hatásvonal iránya, illetve a hatásszög nagysága elsősorban a csapágy szerkezeti kialakításától függ, de kis mértékben a csapágyra ható terhelés is befolyásolja. A hatásszög a csapágy egyik legfontosabb jellemzője, mert ettől függ a csapágy belső erőjátéka, ami megszabja, hogy a csapágy milyen irányú erők felvételére alkalmas.

A 3.3. ábra mélyhornyú golyócsapágy hatásvonalát és hatásszögét (\(\alpha\)) mutatja tiszta radiális és tiszta axiális terhelés esetén.

3.3. ábra: Az egysorú mélyhornyú golyócsapágy hatásvonala és hatásszöge

3.3. Gördülőcsapágyak típusai

A különböző kialakítású gördülőcsapágyakat legáltalánosabban a hatásvonaluk szerint lehet csoportosítani, melyet szokás a felvett terhelés iránya szerinti besorolásnak is nevezni. További csoportosítási lehetőségek a gördülő testek alakja szerinti, illetve a beálló képességük szerinti csoportosítás.

3.3.1. Gördülőcsapágyak osztályozása

A terhelés iránya szerint:
a) Radiális csapágyak (hordozó csapágyak), melyek a forgástengelyre merőleges erőket vesznek fel, bár legtöbbjük kisebb axiális terhelés felvételére is alkalmas. A kis hatásszögű csapágyak sorolhatók ide, $\alpha<10..15^\circ$.
b) Ferde hatásvonalú csapágyak, radiális terhelés felvétele mellett jelentősebb axiális terhelés felvételére is alkalmasak. Hatásszögük: $10..15^\circ<\alpha<50..60^\circ$.
c) Axiális csapágyak (támasztócsapágyak) vagy más néven tárcsacsapágyak, melyek a tengelyirányú erőket veszik fel. Hatásszögük: $\alpha>50..60^\circ$, így egyes típusok kis mértékű radiális terhelés felvételére is alkalmasak.

A szakirodalom egyes esetekben a radiális és a ferde hatásvonalú csapágyakat egységesen gyűrűscsapágyaknak is nevezi.

A gördülőtestek alakja szerint:
 a) golyósak
 b) görgősek (hengergörgős, tűgörgős, hordógörgős, kúpgörgős, rugógörgős)

Szerkezetük szerint a csapágyak lehetnek:
 a) merevek
 b) önbeállók

3.3.2. Radiális és ferde hatásvonalú, vagy gyűrűs golyócsapágyak

A radiális golyócsapágyak a fő radiális terhelésükön kívül, típustól függően kisebb-nagyobb axiális terhelést is fel tudnak venni. A 3.4. ábra különféle radiális golyócsapágyakat szemlél tet.

3.4. ábra: Radiális és ferde hatásvonalú golyós csapágyak

a) Mélyhornyú golyócsapágy (3.4. ábra a-b.)
Az egysoros kivitel egyszerű felépítésű, leggyakoribb típus.
Radiális- és mindkét irányú axiális terhelést is fel tud venni. Létezik egy és kétoldali porvédő lemezes (Z, 2Z) és gumitömítőtárcsás (RS, 2RS) kivitelben. (Szennyeződés bejutástól és kenőszír kijutástól védekezik). A kétsoros kiviteli ritkábban használatos. Az egysoroshoz képest nem dupla a teherbírása, de a rezgések kisebb. Szennyezett helyeken pl. mezőgazdasági gépekben is használják.

b) Vállcsapágy (3.4. ábra c.)

c) Beálló golyóscsapágy (3.4. ábra d.)

d) Ferdehatásvonalú egysoros golyóscsapágy (3.4. ábra e.)

e) Ferdehatásvonalú kétsoros golyóscsapágy (3.4. ábra f.)
Ezek a csapágyak radiális és kétirányú axiális terhelést is fel tudnak venni, valamint nyomatékkal is terhelhetőek. A hatásszögük 32° vagy 45°. Szintén a pontos tengelyirányú vezetést igénylő helyeken, fogaskerék-hajtóművekben, szerszámépítőkben, személygépkocsik kerékpárosnak méretezésének van az.

f) Négypont érintkezésű golyóscsapágy (3.4. ábra g.)
A hatásszögük 35°, így a radiális terhelés mellett mindkét irányban ható axiális erővel is terhelhetők. Készülhet osztott külső, vagy osztott belső gyűrűvel, mint az ábrán is mutatja. Az osztott külső vagy belső gyűrű több golyó elhelyezését teszi lehetővé, ebből következik a csapágy nagy teherbírása.

g) Y-csapágy (3.4. ábra h.)

3.3.3. Radiális görögcsapágyak

A radiális görögcsapágyak a golyóscsapágyakhoz képest nagyobb terhelhetőségűek, és a dinamikus igénybevételekre is alkalmasak.

Legtöbb típusuk egysoros, de a henger- és hordógörgősek kétsoros kivitelben is készülnek. A különféle radiális görögscsapágyakat a 3.5 és 3.6 ábrák szemléltetik.

3.5. ábra: Hengergörgős csapágyak

3.6. ábra: Radiális görög csapágyak

a) Hengergörgős csapágyak (3.5. ábra)

A hengergörgős csapágyak nagyobb teherbírásúak, mint a radiális golyóscsapágyak. Nagy fordulatszámmal üzemeltethetők. Szétszedhetők, ezért a be- és kiszerelésük könnyebb. Az NU (3.5. ábra a.) és N (3.5. ábra b.) jelű csapágyaknak csak egyik gyűrűjükönél van váll, így azok csak radiálisan terhelhetők. Az NJ (3.5. ábra c.) és NUP (3.5. ábra d.) típusok egy-, illetve két irányból fel tudnak venni bizonyos nagyságú axiális terhelést is.
A kétsoros hengergörgős csapágyak (3.5. ábra e.) nagy futáspontosságúak, rezgésekre nem érzékenyek és nagy terhelhetőségűek. Ma már gyártanak kereszthengergörgős (3.5. ábra f.) kivitelt is, melyet nagy terhelésű, csapágyázásokhoz ajánlják. Radiális-, kétirányú axiális- és nyomatékerhelést is fel tud venni.

b) **Tűgörgős csapágyak** (3.6. ábra a.)

c) **Kúpgörgős csapágyak** (3.6. ábra b-c.)

d) **Beálló görgőcsapágyak** (3.6. ábra d.)
Hordó alakú gördülőelemek a külső és belső gyűrű kúpfelületen gördülnek, ígyvalósul meg a vonalérintkezés a futópályák és a gördülőelemek között. A gördülőfelületek alkotóvonalakat is a gördülőelemek forgásközépvonalakat egy pontban, a tengelyvonalon metsződnék, így jön létre a tiszta gördülés (3.6. ábra b.). A gördülőelemsort a belső gyűrűn kialakított pálya vezeti meg, a külső gyűrű pedig levethető. A csapágy hatásszöge a külső gördülőpálya félkúpszögével egyezik meg ami általában 10…28° között van. A radiálisan terhelés mellett, egyirányú jelentős nagyságú axiális terhelést is fel tud venni. Alkalmazáskor párosával, egymással szembefordítva építik be, így kéti rányú axiális terhelést is fel tudnák venni. Ugyanakkor a kúpgörgős csapágyak is készíthetnek többsoros kivitelben, ekkor a közös belső gyűrű és a közös külső gyűrű ellentétes elrendezésű. A kúpgörgős csapágyak szétszedhetők, ezért beszerelésnél a csapágyhézagot be kell állítani, azaz a csapágyat el kell feszíteni. A megfelelő előfeszítés növeli az ágyazás merevségét. Továbbá kedvező tulajdonságuk, hogy kopás esetén a csapágyhézagot be kell állítani, azaz a csapágyat elő kell feszíteni. A megfelelő előfeszítés növeli az ágyazás merevségét. Továbbá kedvező tulajdonságuk, hogy kopás esetén a csapágyhézagot be kell állítani, azaz a csapágyat elő kell feszíteni. A megfelelő előfeszítés növeli az ágyazás merevségét. Ezenkívül, hogy a műanyag anyag nagy dinamikus terhelésekre is kiválóan alkalmas.

e) **CARB csapágyak** (3.6. ábra e.)
A hengergörgős és a beálló görgős csapágy jó tulajdonságait egyesíti a legújabb fejlesztésű SKF-csapágy, az úgynevezett CARB csapágy, amelyik a hengergörgős csapágy viszonylag nagy teherbírást és magas határfordulatszámát egyesíti a beálló görgős csapágy szerelési hábákkal szembeni érzéketlenségével. Előnyösen lehet alkalmazni olyan helyen, ahol a nagy terhelés és a szerelési szöghiba mellett magas
hőmérséklet miatt jelentősebb hőtágulásokkal is számolni kell, mint például a papírgyártó gépsorok száritóhengereinek vagy hengerműhengereinek csapágyazásai.

3.3.4. Axiális vagy tárcsás golyóscsapágyak

A 3.7. ábra négy különböző típusú axiális golyócsapágyat szemléltet. A golyós tárcsascsapágyak túl nagy terheléseket és erős dinamikus hatásokat nem tudnak felvenni.

3.7. ábra: Axiális csapágyak

a) Egyfelé ható axiális golyócsapágy (3.7. ábra a.)
A kétfájó fészek a tengelytárcsa, a másik pedig a fészektárcsa, a golyós sorozat a lemez kösszerkezet fogja össze. A fészektárcsa átmérője néhány tized mm-rel nagyobb, mint a tengely tárcsa átmérője. Szerelése egyszerű, mert három részre szétszedhető, és így a tárcsák külön-külön építhetők. A csapágy hatásszöge 90°, ezért radiálisan nem terhelhető. Egy csapágyazáson belül a radiális terhelés felvételére külön radiális csapágyat kell beszerelni. Ezek a csapágyak kis fordulatszámra üzemelhetők.

b) Kétfelé ható axiális golyócsapágy (3.7. ábra b.)
A kétsoros axiális golyócsapágyak kéttársú axiális erővel terhelhetők és nagyobb fordulatszámokban is alkalmazhatók, de mivel a kétsoros axiális golyócsapágy hatásszöge is 90°, radiálisan ez a csapágy sem terhelhető. A fészektárcsák és a golyós kosarak megfelelően megegyeznek a megfelelő egyirányú terhelésre készült csapágyak alkatrészeivel.

c) Beálló axiális golyócsapágy (3.7. ábra c.)
Mind az egyfelé ható, és mind a kétfélé ható axiális golyócsapágy készülhet beálló fészektárcsával is, a gyártási és szerelési hibák kiegyenlítésére. A terheletlen beálló fészektárcsa befeszülésre hajlamos, ezért cél szerű ezeket a csapágyakat axiálisan előfeszíteni.

d) Ferdehatásvonalú kétsoros axiális golyócsapágy (3.7. ábra d)
Kétírányú nagy axiális erővel terhelhető, illetve mivel a ferdehatásvonalú kétsoros axiális golyócsapágy hatásszöge 60°, így radiálisan is terhelhető, sőt nagyobb fordulatszámokban is alkalmazhatók, azaz a határfordulatszáma viszonylag magas. Fő alkalmazási területe a szerszámgépipar.
3. GÖRDÜLŐCSAPÁGYAK

3.3.5. Axiális vagy tárcsás görgőcsapágyak

a) Axiális görgős és tűgörgős csapágy (3.7. ábra e-f.)

A kis helyszükséglete mellett merev csapágyazást biztosít. Nagy axiális teherbírású, de radiálisan nem terhelhető, viszont az axiálisában a lökésszerű terhelésekre is érzékeny.

Az axiális kéttárcsás görgő és tűcsapágyakban a gördülőelem kúpgörgős lehet. A kis helyszükséglet mellett merev csapágyazás t biztosít. Nagy axiális teherbírású, de radiálisan nem terhelhető, viszont axiálisan a lökésszerű terhelésekre is érzékeny.

Az axiális kéttárcsás görgő és tűcsapágyakban a gördülő elem kúpgörgős lehet. A henger-görgős több sorban is elhelyezkedhetnek a koszarszerkezetben.

A csapágy kialakításából következik, hogy a gördő a gördülés mellett csúszik is, ezért kicsi a határfordulatszáma, kb csak fele, mint a hasonló méretű axiális golyós csapágyaké.

Az axiális kéttárcsás görgő és tűcsapágy a gördülő elem kúpgörgős lehet. A henger-görgős több sorban is elhelyezkedhetnek a koszarszerkezetben.

A csapágy kialakításából következik, hogy a gördülés mellett csúszik is, ezért kicsi a határfordulatszáma, kb csak fele, mint a hasonló méretű axiális golyós csapágyaké.

A csapágy tárcsák nélkül is beépíthető, tehát mint görgő és koszorú működik, ekkor a kosarat a gördülőelemek vezetik. Egy csapágyazáson belül a radiális terhelés felvételére ezen csapágy alkalmazásakor is külön radiális csapágyat kell beszerelni.

b) Axiális beálló görgőcsapágy (3.7. ábra g.)

A fészektárcsa gördülő pályája gömb felületű, amelyre aszimmetrikus hordógörgők illeszkednak. Kifejezetten nagy axiális terhelések felvételére készült, ugyanakkor a csapágy radiálisan is terhelhető, de csak az axiális terhelés 55%-áig. A csapágy süröldási ellenállása viszonylag nagy, hasonlóan a radiális beálló görgőcsapágyhoz, ezért a határfordulatszám alacsony. Az axiális beálló görgőcsapágy olajkenésüek, csak kivételes esetekben és nagyon lassú fordulatszám esetén lehet zsírkenést alkalmazni.

c) Axiális keresztgörgős csapágy (3.7. ábra h.)

Az egymás melletti görgők tengelyeivel merőlegesek egymásra. A görgőket egymástól, mintegy kosárként, kis műanyag korongok választják el. Nagy axiális erők felvételére, és kifejezetten nagy méretekben készülnek. Nagy méretű könnyen ellenére is igen pontosan vezetnek, ezért elsősorban nagyméretű szerszámgépek függőleges tengelyeinek ágyazására használnak, illetve a forgódaruk királycsapágyaként is elterjedtek.

A csapágygyártók mára már kifejlesztették az úgynevezett kombinált csapágyakat is, amelyek a radiális és az egy irányba ható axiális erővel terhelhető, minden terhelési irányra a leghatékonyabb csapágytípus felhasználásával valósítanak meg, legnagyobb előnyük a kis beépítési helyszükséglet. Meg kell jegyeznünk azt is, hogy főleg különleges alkalmazásra az eddig megismert csapágytípusokhoz képest más szerkezeti kialakítású csapágyakat is gyártanak. A különleges alkalmazások tekintetében élen jár robottechnika és a gépjárműipar.

3.4. A gördülőcsapágyak jelölési rendszere

A csapágyak jelölési rendszerét az ISO 355-1977 szabvány tartalmazza. A radiális csapágyak átmérő- és szélességsorozat értelmezése a 3.8. ábra a. részén látható. Minden „d” furatátmérőhöz egy „D” palástátmérő-sorozat (jobbra növekvően) tartozik, ezek alkotják a 8, 9, 0, 1, 2, 3, 4 jelű átmérő-sorozatot. Minden átmérő-sorozatban több szélesség-sorozat is van, ezeknek 0, 1, 2, 3, 4, 5, és 6 jele szerint a B csapágyeszélesség a sorban jobbra haladva növekszik.

Az axiális csapágyaknál is több méretsorozat létezik, de ott a szélesség-sorozatnak magasság-sorozat felel meg.
Az átmérősorozatok és a szélesség-, illetve magasság sorozatok kombinációjából képződnek a méretsorozatok.

A gördülőcsapágyak jelölési rendszerét a 3.8. ábra b. része szemlélteti.

3.8. ábra: Gördülőcsapágyak méretsorozatának értelmezése, és jelölési rendszere

3.5. A gördülőcsapágyak kiválasztása a megkívánt élettartam szempontjából

A forgó csapágyak üzemeltetésük során változó terhelésnek vannak kitéve, ezért a kifáradásig megilletett körülfordulási számukat tekintjük a csapágyak élettartamának.

A csapágyak méretezését a fejlesztő, gyártó vállalatok bonyolult elméleti számításokkal és kísérleti vizsgálatok segítségével elvégzik. Minden csapágytípusra meghatározzák a kifáradási görbét (Wöhler-görbe) (3.9. ábra) és annak egy pontját, a 10^6 igénybevételi számhoz tartozó dinamikus terhelhetőséget (C), amit csapágykatalógusban is megadnak.
A kifáradási görbe alakja hiperbola, az egyenletében szereplő kitevő golyócsapágyaknál p=3, görgőcsapágyaknál p=10/3. A csapágy kifáradását, tönkremenetelt az üzemelés közbeni zajosabbá válás jelzi, ilyenkor a gördülőelemeken, futófelületeken kigödrösödés, kipattogzás (pitting) látható.

Az alkalmazók, üzemeltetők a csapágyakat nem méretezik, hanem katalógusból kiválasztják. A csapágynagyság lényeges alapadata, a csapágyazandó tengelyátmérő. A típuskiválasztás az alkalmazási területtől, az igénybevételtől és az üzemviszonyoktól függ. Ezek ismeretében már kiválasztható katalógusból egy csapágy, melynek geometriai méretei és további jellemzői válnak így ismertté.

A gördőcsapágyak élettartama:

\[
C^p \cdot 10^6 = \text{const.} = P^p \cdot 3600 \cdot n \cdot L_h,
\]

\[
L = \left(\frac{C}{P} \right)^p = \frac{3600 \cdot n \cdot L_h}{10^6} \quad \text{[millió fordulat]},
\]

ahol:
- \(p = 3 \) golyócsapágyaknál
- \(p = 10/3 \) gördőcsapágyaknál
- \(C \ [N] = \) dinamikus alapteherbírás (katalógusból)
- \(n \ [s^{-1}] = \) fordulatszám
- \(P \ [N] = \) terhelés
- \(L_h \ [üö] = \) élettartam üzemórában

Járművekben, mobil gépekben millió kilométerben \((L_{km})\) adják meg az élettartamot, a futókerék átmérő \(D[m]\), felhasználásával

\[
L_{km} = \frac{L \cdot D \cdot \pi}{1000} \quad \text{[milliókm]}.
\]
3.10. ábra: Tengelyek terhelései a) radiális terhelés, b) axiális terhelés, c) összetett terhelés

A csapágyak terhelése

A tengelyre ható terhelések irányuk szerint lehetnek radiálisak vagy axiálisak. Az egyidejűleg ható, radiális- és axiális irányú terhelést összetett terhelésnek nevezzük. A terhelések elvi értelmezése a 3.10. ábrán látható. A gördülőcsapágyon belül az erő a tengelyről a csapágyházra a csapágygyűrűkön és a gördülőelemeken keresztül adódik át. Tehát az üzemelés során a csapágyakra az üzemi terhelés (radiális, axiális vagy mindkettő) ismétlődően és általában dinamikus hatásoktól sem mentesen hat.

Mindezen hatásokat egy képzelt, állandó nagyságú, nyugvó radiális terheléssel, úgynevezett egyenértékű terheléssel (P) vesszük figyelembe.

Radiális csapágyak egyenértékű dinamikus terhelése egyidejűleg ható radiális és axiális terhelésre

\[P = f_u (X F_r + Y F_a) , \]

ahol:
- \(f_u \) üzemtényező (nem várt dinamikus hatások beszámítására),
- egyenletes üzemű forgógépeknél \(f_u=1\ldots1,2 \) (villamos gépek, ventilátorok, stb.),
- egyenletes járású gépeknél \(f_u=1,2\ldots1,5 \) (dugattyús gépek, kompresszorok),
- erős lökésnek kitett gépeknél \(f_u=1,5\ldots3 \) (hengerművek),

www.tankonyvtar.hu © Bider Zsolt, SZE
- X: a csapágy dinamikus radiális tényezője,
- Y: a csapágy dinamikus axiális tényezője.

A terhelési tényezőket az

\[
\frac{F_a}{F_r} \leq e \quad \text{és} \quad \frac{F_a}{F_r} \geq e
\]

esetekre adja meg a katalógus. A csapágyakra jellemző „e” értéket a katalógusok közlik.

Axiális csapágyak egyenértékű dinamikus csapágyterhelése:

\[P = F_{ax}, \]
mivel csak axiálisan terhelhetők.

Beálló axiális csapágyak egyenértékű dinamikus csapágyterhelése:

\[P = F_{ax} + 1,2 \cdot F_{r}. \]

Egyenértékű terhelés periodikus vagy változó terhelésnél (változó terhelés és változó fordulatszám esetén)

\[
P = \sqrt[\text{N}]{\left(P_1^p \cdot N_1 + P_2^p \cdot N_2 + \ldots + P_n^p \cdot N_n \right)},
\]
ahol:
- \(P_1 \) = terhelés, \(N_1 \) körülfordulás alatt
- \(N \) = összes körülfordulás
- \(n \) = terhelési csoportok száma.

Ferde hatásvonalú golyós- és küpgörgős csapágyaknál a tisztán radiális külső terhelésből, a csapágyszerkezetből adódóan belső axiális erő is keletkezik. Ez a belső axiális erő a gördülőelemek forgációs erőként (axiálisan) el tudja mozogni. Ennek megakadályozására az ilyen csapágyakat párosával, egymással építenek be. Az ilyen esetekben az egyik csapágy radiális terheléséből adódó belső axiális terhelést a másik csapágy veszi fel.

Gyakran előfordul (pl. gépjármű üzemelésnél), hogy külső axiális erő (\(K_a \)) is hat a csapágyazásra, mely csak az egyik csapágyra hat. Az egyenértékű terhelés számítása terhelési esetenként, csapágyánként különböző.

A számítás menetét a görgős csapágyakra a 3.11. ábra, a ferde hatásvonalú golyóscsapágyra pedig a 3.12. ábra részletezi. Ezeket a számítási módokat a csapágykatalógusok is tartalmazzák.

Az egyenértékű terhelések:

\[
P_1 = X_1 \cdot P_{al} + Y_1 \cdot P_{al} \quad \text{és} \quad P_{II} = X_{II} \cdot P_{II} + Y_{II} \cdot P_{II},
\]
3.11. ábra: Kúpgörgős csapágyak járulékos terhelése
3.12. ábra: Golyós csapágyak járulékos terhelése

3.6. Gördülőcsapágyak statikus alapteherbírása

A gördülőcsapágyak terhelése álló helyzetű és lassú forgású üzemelés közben nem a kifáradás, hanem az érintkező felületeken létrejövő deformáció. Ilyen eseteknél a kiválasztott csapágyat statikus alapteherbírásra, más szóval határterhelésre ellenőrizzük.

A határterhelésre ellenőrzés esetei, ha a csapágy:
- üzemi fordulatszáma < 0,17 1/s,
- lengőmozgást végez.

<table>
<thead>
<tr>
<th>Beépítési változat</th>
<th>Terhelési változatok</th>
<th>Axiális terhelés-komponensek</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-beépítés</td>
<td>1a. $e_F^{I} >= e_F^{II}$</td>
<td>$F_{lI} = e_F^{I} + K_{a}$</td>
</tr>
<tr>
<td></td>
<td>$F_{lII} = e_F^{II}$</td>
<td>$F_{lI} = e_F^{I} + K_{a}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$F_{lII} = e_F^{II}$</td>
</tr>
<tr>
<td>X-beépítés</td>
<td>1b. $e_F^{I} < e_F^{II}$</td>
<td>$F_{lI} = e_F^{I} + K_{a}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$F_{lII} = e_F^{II}$</td>
</tr>
<tr>
<td></td>
<td>1c. $e_F^{I} > e_F^{II}$</td>
<td>$F_{lI} = e_F^{I} + K_{a}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$F_{lII} = e_F^{II}$</td>
</tr>
</tbody>
</table>

Az F_{lI} és F_{lII} erők mindig + előjelűek. Az 1c és 2c feltételek $K_{a} = 0$-ra is érvényesek.

© Bider Zsolt, SZE www.tankonyvtar.hu
- álló helyzetben is terhelt,
- forgó és lökésszerű csúcsterhelésekkkel üzemel.

A csapágy határterhelésének jele:
- radiális terhelésnél: \(C_0 \) [N],
- axiális terhelésnél: \(C_{0a} \) [N],
- értékeik, típusonként a katalógusokban megtalálhatók.

A határterhelés számítása:

\[
C_0 \geq s_0 F_0 \quad \text{ill.} \quad C_{0a} \geq s_0 F_{0a},
\]

ahol:
- \(F_0 \) a statikus egyenértékű terhelés,
- \(s_0 \) a statikus tényező.
- \(s_0=1,5...2 \) nagy igénybevétel, lökésszerű terhelés, átlagos futáspontosság és zaj-szegény üzemelésnél,
- \(s_0=2 \) nagy futáspontosságnál,
- \(s_0=0,8...1,2 \) normál igénybevételnél,
- \(s_0=0,5...0,8 \) kis igénybevételnél, lengőmozgásnál.

A statikus egyenértékű terhelés:

\[
P_0=X_0 P_r + Y_0 P_a,
\]

ahol:
- \(X_0, Y_0 \) statikus terhelési tényezők (katalógusból).

3.7. Gördülőcsapágyak kenése

A kenés feladata a súrlódás, a kopás és velejáró melegedés csökkentése, valamint a csapágy korrózióvédelme.

A kenőanyag megválasztásánál az alábbiakat kell figyelembe venni:
- fordulatszám
- csapágymérlet
- csapágyterhelés
- üzemű hőmérséklet
- szennyeződés
- konstrukciós szempontok

3.7.1. Zsírkenés

A kenőzsírok alapolaj és sűritőszerek alkotta felfolyékony vagy szilárd szuszpenziók. Az alapolaj általában ásványolaj, vagy szintetikus olaj lehet. A sűritőszerként kalcium, nátrium, illetve litium szappan és esetleg ezen elemek sójai is használhatóak.

Kálciumszappanos zsírok jó mechanikai stabilitásúak, vízben nem oldódnak, alacsony hőmérsékleten (-50 °C...+60 °C-ig) kis terhelésnél, közepes fordulatszámg és esetleg ezen elemek sójai is használhatóak.

Nátriumszappanos zsírok jó tapadási- és tömítő tulajdonsággal rendelkeznek, de vízben oldódnak. Magasabb hőmérsékletig (-50 °C...+120 °C-ig) nem nedves helyen alkalmazhatók.
Líthiumszappanos zsírok jó tapadóképességűek, magas hőmérsékleten is jó mechanikai stabilitásúak és elhanyagolható mértékig oldódnak vízben. Legtöbb alkalmazási területnél hatékony kenést biztosítanak, -50 °C...+150 °C hőmérsékletáramnál.

Szintetikus zsírok alapján szintetikus kenőolaj, sűrítőszerként fémzsappanokat, alumínium-szilikátot, vagy teflont alkalmaznak. Nem olyan gyorsan oxidálódnak, mint az ásványolajok, ezért szélesebb körben alkalmazhatók, mint az egyéb zsírok. Jó kenőképességűek széles hőmérséklettartományban (-70 °C...+150 °C-ig).

A kenőzsírokba különböző adalékokat is tesznek, hogy még további tulajdonságokkal is rendelkezzenek:
- a rozsdásodásgátló szerrel a fémszerkezetet védik,
- az oxidációs gátló szerrel a magas hőmérsékleten is védetté válik a zsír (tartósabbá válik),
- nagy nyomásállóságú adalékkal a kenőanyag teherbíró képessége nő.

A csapágyakba helyezett zsír mennyisége, vagy a csapágy élettartamáig elegendő, vagy esetleg utánkenésre is szükség van.

Az utánkenéshez szükséges zsírmennyiség:

\[
G = 0,005 \cdot D \cdot B \quad [\text{g}],
\]

ahol:
- \(D \; [\text{mm}]\) - a csapágy külső átmérője,
- \(B \; [\text{mm}]\) - a csapágy gyűrűszélessége.

A csapágyak utánkenéséhez szükséges zsírmennyiség és az utánzsírzási időtartam, a csapágytípusok függvényében, a csapágykatalógusokban megtalálható diagramok és összefüggések segítségével is meghatározhatók.
3.13. ábra: Gördülőcsapágy utánkenési diagram

3.7.2. Olajkenés

Olajkenést alkalmaznak nagy fordulatszámnál, magas üzemi hőmérsékletnél, kis súrlódásigénynél és olyan szerkezeteknél, amelyekben a csapágyon kívül más gépelem is kenést igényel. A csapágyazások szokásos olajkenési megoldásai:

- merülő,
- olajfürdős,
- szóróolajos,
- cirkulációs,
- friss olajbevezetéses.

A kenőolajok ásványi, vagy szintetikus eredetűek. A gördülőcsapágyak leggyakrabban alkalmazott kenőolajai az ásványi olajok, melyek paraffinos, nafténos, vagy a kettő kombinációja szerinti összetételűek. Legelterjedtebbek az erősen finomított paraffinolajok. Szintetikus olajokat ritkábban alkalmazzák, de túl alacsony és magas üzemi hőmérsékletnél, nagy terhelésnél nélkülözhetetlenek.

A kenőolajok tulajdonságait adalékokkal javítják. Leggyakrabban oxidációt gátló-, rozsdásodást gátló-, habzást gátló-, kopást csökkentő-, nyomásállóságot növelő adalékokkal gyártják az olajokat. A kenőolaj kiválasztásának főbb szempontjai:

- a terhelés
- a fordulatszám
- a hőmérséklet
- a használati időtartam.
3.14. ábra Használatos kenőolaj-viskozitás

A mértékadó üzemviszonyokhoz szükséges kenőolaj-viskozitás alapján kell olajtípust választani. A kiválasztott csapágytípusra az n/nₜₐₜ figurelembevétellel az alsó ábra segítségével ez a viskozitás érték tetszőleges hőmérsékletre átszámítható. A csapágy élettartama növelhető, ha a szükségnél nagyobb viskozitású kenőolajat választunk. (A hőmérsékletnövekedés lehatárolja a viskozitás növelés lehetőségét).

3.8. Csapágyazásoknál alkalmazott tömítések

A tömítés feladata a csapágy kenőanyagának kenőshelyen tartása, és a csapágy szennyeződés-től való védelme.
A tömítés típusának megválasztását a fordulatszám, a kenőanyag fajtája, a kenési mód, az üzemi hőmérséklet, a külső környezeti hatások, és maga a konstrukció befolyásolja.

A csapágyak tömítésére legelterjedtebben az úgynevezett súrlódásos tömítéseket alkalmazzák. Ezek a nemeztömítés és a karmantyús tömítésű és rugós tömítésű, vagy rugós tömítésű. A nemeztömítés zsírkenéshez, t<100 °C üzemi hőmérsékletig alkalmazható. A karmantyús tömítésű főleg olajkenésnél, magasabb fordulatszámnál és hőmérsékletnél szokás alkalmazni, viszont finom megmunkálású felületet igényelnek.

A csapágyok tömítésére a szennyeződésmentes helyeknél, zsír- és olajkenés esetén is, az úgynevezett réstömítés, vagy a labirint-tömítés is alkalmazható. Ezekkel a tömítésekkel a tömítések című fejezetben részletesen foglalkozunk.

3.9. Gördülőcsapágyak beépítése

A gördülőcsapágyak felhasználhatók a legkülönbözőbb csapágyazási feladatok esetében, a cél mindig a legmegfelelőbb típus kiválasztása, és a leghelyesebb beépítési mód megállapítása, amelyet az üzemeltetési, karbantartási, szerelési szempontok határoznak meg. Így rendkívül változatos csapágybeépítési megoldások vannak.

3.9.1. A gördülőcsapágyak illesztése, futáspontosság

A gördülőcsapágyak különböző gyártási hőzaggal kerülnek forgalomba. Az alapkivitelű csapágyak, amelyek gyártási hőzágait szabványok írják el, normál hőzágú csapágyak mellett kisebb, azaz szűkített hőzágot – jele C2 és C1 – és nagyobb, azaz bővíttetett hőzágot - jele C3, C4 és C5 – csapágyakat is készítenek.

A csapágyhőzagon az összeszerelt gördülőcsapágy egyik gyűrűjének a rögzített másik gyűrűhöz viszonyított elmozdulását értjük, az egyik szélső helyzetből a másikig anélkül, hogy a gyűrűk és a gördülő elemei közötti érintkezésnél rugalmas alakváltozás jön létre. A csapágy működése szempontjából elsősorban a radiális csapágyhőzagnak van jelentősége. Általános szabály, hogy üzememeléssel állapotban a gördülőcsapágyak hőzaga nulla vagy néhány mikrométer legyen. A golyós csapágyak esetén a kisebb mértékű előfeszítés nem káros.

A csapágyak általában normál pontossággal (tűrésel) készülnek, az alapkivitelű csapágyak pontosságát a szabvány a 0 pontossági osztályba, azaz a normál pontosságból sorolja, és P0-val jelöl. A csapágyakat a normál tűrők mellett a szabvány szerint fokozott pontossággal azaz szűkített tűről is gyártják, ezeket a P6, P5, P4, és P2-val jelöl.
A fokozott pontosságú csapágyak beépítésével egyrészt növelhető a tengely futáspontossága, másrészt növekszik a csapágy hatáfordulatszáma. A csapágyak méret-, alak- és futáspontosságát a katalógusok megadják.

A tengelycsap tűrésfokozatai: g…r (k a leggyakoribb), és minősége IT5, IT6. A házfurat tűrésfokozatai F…P (J és K a leggyakoribb) és minősége IT6, IT7.

3.9.2. Gördülőcsapágy-típus kiválasztása

Minden csapágytípus, kiviteli alak rendelkezik jellegzetes tulajdonságokkal, amelyek bizonyos alkalmazási területre a csapágyat különösen használhatóvá teszi. Égy csapágyazási probléma kedvező megoldása során mindenekelőtt a következő szempontok játszanak szerepet a csapágy típus megválasztásakor:

- Konstrukció: Helyszükséglet, ki- és beszerelés, szögbeállóképesség.
- Üzemi feltételek: Terhelés, fordulatszám, futáspontosság, merevség, súrlódás, karbantartás.
- Költségek: Sok esetben a költségek játsszák a leglényesebb szerepet.

Ha több különböző műszaki lehetőség van, általában abból lehet kiindulni, hogy kisebb méretű és kisizomlású golyóscsapágy a legolcsóbb. Azonban nemcsak a csapágy, hanem az egész szerkezet önköltsége, a szerelési, karbantartási kiadások együttes mérlegelése vezet a gazdaságos konstrukcióra.

Kiválasztási szempont a csapágytípus meghatározására:

- Terhelés
 A terhelés elsősorban a csapágy nagyságát határozza meg. Sokszor a beépítési körülmények korlátzókkal a csapágy valamelyik föméréttét. Ha a sugárirányú méretet kell lehetőleg kilátást tartani, akkor a széles, hengergörgős, tüögörgős, a 320-as sorozatú kúp-görgős, a 230 és 240-es sorozatú hordógörgős csapágyak jönek előtérbe. Ha tengelyirányban kicsi a hely, akkor 60-as sorozatú mélyhornyú golyóscsapágyak, vagy az NU 10 sorozatú hengergörgős csapágyak használhatók. Ha pedig a furat átmérő az adott, vagy azt kell kis értéken tartani, akkor például a golyóscsapágyak közül a 33-as sorozatú görgőcsapágyak közül az NU 23E sorozatú a legnagyobb dinamikus alapteherbírású.

- Beállási képesség
 A szögbeállást kétfele módon lehet megvalósítani:
 - a csapágyon kívül a csapágyház tud beállni,
 - a csapágy áll be gömbfelületű futópályája segítségével.

- Fordulatszám
 A fordulatszám korlátot leginkább az idézi elő, hogy a gördülő elemek forognak, és tömegeik lépnek fel. Ezért a könnyű sorozatú golyóscsapágyak alkalmazak elsősorban nagy fordulatszámra. A növekvő súrlódás, hőfejlődés szintén lényeges szempont a határfordulatszám szempontjából. Egyidejű radiális és axiális terhelés esetén a ferdehatásos vonó golyócsapágy alkalmas nagy fordulatszámra. A megfelelő kosárkonstrukció segítségével ez segíthet a határfordulatszám növelésében.

- Pontos és merev vezetés
Szerszámépek főorsóinál, nagyfordulatszámú tengelyeknél (gázturbina), ivelt fogazatú kupkeréktengelyeknél, zatjalan járású hajtásoknál feltétlen szükséges a tengely pontos, játék nélküli, merev vezetése.

Így tehát a csapágyazással szembeni követelmény:

– a csapágyhézag pontos beállíthatósága,
– üzem közben hézamentes futás,
– kis rugózás; kis rugalmas alakváltozás,
– nagy futáspontosság.

A csapágyhézag kérdése az, amelyet a tervező a leginkább kézben tud tartani. Radiális csapágyaknál a csapágy gyártási hézagának értékéhez úgy kell az illesztéseket megállapítani, hogy beszerelt állapotban a hézag elftűnjön. Hengergörgős csapágyok hézaga nagyobb, mint a mélyhornyú golyócsapágyaké.

Szerszámép-főorsó ágyazásánál ezért a normál hézagnál kisebb hézágú hengergörgős csapágyat építenek be.

Kúpos furatú csapágyak esetében a tengelyre szerelt kúposhüvely segítségével, axiális befeszítés útján, a sugárirányú hézag tetszőlegesen állítható (szorítóhüvelyes, illetve lehúzó-hüvelyes csapágyak).

A radiális és axiális hízag egyidejű beállítása vagy megszüntetése legegyszerűbben ferde hatásvonaltú csapágyakkal (válcseapaság, kúpgörgős, ferdehatásvonaltú golyós) érhető el. A csapágyak beállítását tengelyirányú rugóbeszorítás (pl. tányérrugók) útján, vagy pedig a gyűrűk oldalfelületére közvetlenül támaszkodó tárcsák, fedényuványok útján merev beszorítással lehet elérni.

A gördülőcsapágyak rugózása, rugalmas alakváltozása csekély, a legtöbb esetben figyelmen kívül hagyható. Bizonyos esetekben azonban a csapágyak merevsége lényeges szerepet játszik. A vonalmentén érintkező csapágyak (hengergörgős, kúpgörgős) kisebb rugalmas alakváltozással rendelkeznek, mint a pontoszerűen érintkezők. Kényes esetekben elméleti úton számíthatók a rugalmas sugárirányú és tengelyirányú eltolódások, deformációk. Egy tengely terhelés alatti elhelyezkedése nemcsak a csapágyzás rugalmas viselkedésétől, hanem a csapágyat körülvéve szerkezeti rész (pl. hajtóműház) rugalmas alakváltozásától is függ. Ezért, adott esetben, igen fontos a csapágy rugózásának meghatározása. Nagyteljesítményű hajtómű tengelyek (pl. ivelt fogazatú kupkerék tengelyeinek) ágyazásakor, ha a nagy futáspontosság nem is nagy követelmény, de a fogaskerek kapcsolódásához a deformációk korlátozása szükséges, olyan megoldást kell választani, hogy a legnagyobb merevség adódjék. A merevség növelhető még a csapágyak előfeszítése útján is (csapágyhézag nincs).

Ki- és beszerelés

A ki- és beszerelési lehetőségek meghatározóan befolyásolják a csapágykiválasztást. Nagy be- és kisbeszerelési erőt nem szabad a gördülőelemek keresztül kifejteni, nehogy a futópályákon maradó deformáció (benyomódás) keletkezzen. Nem szétszedhető csapágyak esetén nehéz elkerülni, hogy a gördülőelemek ne végnyen át erőhatást, különösen ha mindkét gyűrűt szorosan kell illeszteni, és nincsen olyan szerelési készülék, amellyel mindkét gyűrűt egyidejűen lehet a helyére sajtolni. Ilyen esetben célszerűbb szétszedhető csapágyat (hengergörgős, kúpgörgős, válcseapaság) tervezní, amelynek gyűrűs külön-külön könnyebb szerelni. Hasonló a helyzet olyan csapágyzásnál, amelyet gyakran kell szétszerelni és összeszerelni.

Például száras kupkeréktengely esetében hengergörgős és két kúpgörgős csapágyat
3. Gördülőcsapágyak

Építenek be, a belső gyűrűket a gördülőelem koszorúval a tengelyre kompletten fel lehet szerelni és a hajtómúházba így lehet beépíteni.

- Kenés és karbantartás

Olajkenés esetén lényegében bármelyik csapágytípus választható. Zsírkenésnél azonban már nagyobb különbségek vannak az egyes csapágytípusok között, az utánkenési idő és a hatáfordulatszám jelent problémát.

Hengergörgős csapágyaknak rövidebb az után- zsírszájási ideje, mint a radiális golyócsapágyaké, és a hordógörgős és kúpgörgős csapágyakat pedig a hengergörgős csapágyaknál is rövidebb üzemidő után kell újraszírozni. Az axiális beállógörgős csapágyakat lehetőleg olajjal kell kennei.

Nagyon igénytelen a kenésre a mélyhornyú golyócsapágy, amely még akkor is meg-bízhatóan üzemel, amikor egész kevés zsír van a csapágyban, vagy csak olajkőd jut bele. Ezért ezt a csapágytípust kell beépíteni olyan helyre, ahol nehéz az utánkenés, vagy igen ritkán beépíteni lehetőleg olajjal kell kennei.

Hengergörgős és csapágyak rövidebb az után- zsírzás ideje, mint a radiális golyócsapágyaké, és a hordógörgős és kúpgörgős csapágyakat pedig a hengergörgős csapágyaknál is rövidebb üzemidő után kell újraszírozni. Az axiális beállógörgős csapágyakat lehetőleg olajjal kell kennei.

3.9.3. Gördülőcsapágyak beépítése

A gördülőcsapágyak beépítésének vannak általános szempontjai, amelyeket szabályoknak is nevezhetünk. Ilyen szabály az, hogy minden forgótengelyt, forgóalkatrészt úgy kell csapágyazni, hogy két radiális megtámasztása legyen és függetlenül attól, hogy van-e axiális erő, vagy nincs, mindkét irányú axiális elmozdulással szemben megtámasztása legyen.

Gördülőcsapágyak vezetése

A tengelyek rögzítését kétféle módon lehet megoldani.

- Vezetőcsapágyas megtámasztás

A tengely egyik végén levő radiális csapágy radiális terhelésen kívül mindkét irányú axiális terhelést is felvezi, illetve mindkét irányú rögzíti, vezeti a tengelyt. Ez a vezetőcsapágy, amely elvileg két csapágy is lehet. A tengely másik végén levő megtámasztás csak radiális terhelést vehet fel, és tengelyirányban elcsúsztatja a tengelyen vagy a házban. Ilyen csapágybeépítést mutat a 3.15. ábra a. része, ahol a baloldali mélyhornyú golyócsapágy vesz fel mindkét tengelyirányú erőt, míg a jobb oldalsó csapágy a házfuratban el tud csúszni (pl. hőtárgulás miatt), így nem áll elő befeszülés, túlhatározottság.

Vezetőcsapágyas ágyazást mutat a 3.15. ábra. b. része is, a két hengergörgős csapágy közül a bal oldalsó vezeti a tengelyt, míg a jobb oldalsó, a tengelyirányú elmozdulást (hőtárgulás) megengedi, a görgősor a belső gyűrű hengeres futópályáján el tud toldni. Ez a megoldás akkor előnyös, amikor nincs jelentős axiális erő, tehát a tengelyt csak rögzíteni kell axiális irányban. Természetesen a két változat kombinációja is lehetséges: a vezetőcsapágy mélyhornyú golyó, az elmozduló csapágy hengergörgős.

- Oldalról támasztott ágyazás

Az oldalról támasztott ágyazás esetén a tengelyt megtámasztó két csapágy radiális terhelésen kívül axiális terhelést is fel tud venni. Ilyen beépítést mutat a 3.15. ábra c. része. Látható hogy a jobbra mutató axiális terhelést a jobb oldali csapágy külső gyűrűjének megtámasztása útján, míg az ellentétes irányú axiális erőt a bal oldali csapágy szintén a külső gyűrűjének megtámasztása útján veszi fel. Ez a csapágyazási megoldás a legegyszerűbb és egyben a legolcsóbbnak is mondható, mindenesetre azonban szerelés szempontjából körültkéntést igényel.

© Bider Zsolt, SZE www.tankonyvtar.hu
Az üzemeltetés során könnyen befeszülés jöhet létre a hótágulás miatt, és ez a csapágyakat idő előtt tönkreteszi. Ezért ez a beépítés csak rövid támaszközök esetén jöhet számításba, illette az egyik csapágyfedélnél célzott néhány tíz esé vára hagyja a befeszülés elkerülésére. Az oldal megtámasztás nem csak golyós csapágyak esetén lehetséges, hanem hengergörgős csapágyakkal is, ekkor azonban nem lehet jelentős axiális erő, illette a csapágyak csak tengelyirányú vezetést adnak (3.15. ábra d.) Ezt jelzi az is, hogy a tengelyre a belső gyűrű csak rögzítőgyűrűvel van felerősítve.

A 3.15. ábra e. része két küpgörgős csapány O elrendezésű beépítését mutatja vezető csapa- ágyas megoldásban. A küpgörgős csapányaktól balra a tengelyre felhúzott távolságtartó csőnek fekszik fel, két csapágyanya (ez az ábrán már nem látható), amelynek meghúzásával lehet a csapágyhézagot a kívánt értékre beállítani. A tengely másik végén két soros hengergörgős csapány van külön házba építve, ez csak radiális terhelést vesz fel. A küpgörgős csapány leginkább egymástól távolab kerül beépítésre, mint oldalról támasztott ágyazás. A csapágyak szerelése egyaránt történhet O és X elrendezésben, de a csapágyhézag beállítása a beépítési helyzethez igazodik. A 3.15. ábra f. része az X beépítést mutatja, oldalról támasztott ágyazásban. A csapágyak belső gyűrűit a tengelyvállának a bal oldalon látható tengelyanya szorítja, így a csapágyak fixen rögzítve vannak a tengelyhez, a csapágyhézag állítása a külső gyűrűk mozgatása után történhet. Ennek szokásos módszere az, hogy a bal oldolsó csapány külső gyűrűjének megfelelő hosszúságú távtartó gyűrűt támasztunk a csapágyfedél segítségével. Mindenesetre a hézag beállítása gondos szerelést követel meg.
3.15. ábra: Vezetőcsapágyas és oldalról támasztott csapágybeépítések
Csapágyak rögzítése tengelyhez

A gördülőcsapágyak beépítésekor fontos szerepet játszik a csapágygyűrűk tengelyhez történő rögzítése. Ennek többféle módja lehetséges, néhány jellegzetes konstrukciós megoldást mutatunk be a következőkben.

Rögzítés tengelyanyával, fogazott biztosítólemezzel (3.16. ábra a.). Leggyakrabban alkalmazott szerelési mód, a menetes rész kismértékben benyúlik a csapágy alá, így biztosabb a meg-szorítás. A tengelyanyák szabványosítottak, de a csapágykatalógusok is tartalmazzák a méreteit. A hornyos csapágyanyához kapcsolódó fogazott biztosítólemeze az elfordulás ellen biztosít. Ehelyett gyakran használnak még egy hornyos anyát, ellenanyás biztosításként. Nagy axiális erő továbbbításra alkalmas ez a felerősítés.

Rögzítés tengelyvétárcsával és hatlapfejű csavarral (3.16. ábra b.). Kisebb csapágyaknál szokás a tengely véget menetes részsel készíteni, és sasszeggel biztosítot koronásanyát használni a felerősítésre, az alátétárcsáttal is megszokott módon. Néha támasztócső segítségével a felerősítésben, ha a csapágy mellett pl. szijtárca, fogaskerék, tengelykapcsolófél stb. van.

Rögzítés biztosító, illetve rögzítőgyűrűvel (3.16. ábra c.). Az axiális rögzítésre nagyon alkalmas egyszerű megoldás, beépítési helyszükséglete kicsi, egyszerűen, gyorsan szerelhető, a tengelybeépítés egyszerűségét a tengelyre szerelhető rögzítő-gyűrű (Seeger-gyűrű) és a házfurat hornyába szerelhető gyűrű szintén szabványosított gépelem. A rögzítő-gyűrűk szerelése úgy történik, hogy a gyűrű fülén levő egy-egy furatba helyezett szerszám segítével a gyűrűt szétnyíttjük (illetve házfurat horony esetén összehúzzuk), és a tengelyre ráhúzzuk. A gyűrű rugalmaságánál fogva helyzetét az axiális felvételre is, ha nem is akkorára, mint a hornyosanya. A tengelyre készített horony azonban jelentős feszültséggyőjtő hatást idéz elő, ezért ezt a rögzítési módot inkább tengelyvégén célszerű alakmazni, ahol csavaró- és hajlító nyomaték már igen kicsi.

Kúpos ülés, felsajtolással (3.16. ábra d.). Legtöbb általánosan használt gördülőcsapágyat 1:12 kúposságú furattal is gyártják. Így a kúpfelületre történő rásajtolás is rögzítést ad.

Rögzítés kúpos szorítóhüvelyvel (3.16. ábra e.). A csapágy tengelyre való szerelése rendkívül egyszerű, nem szükséges a tengelyen vállat készíteni, és a mérettüreése is viszonylag laza lehet (h8...hl0). A szorítóhüvely külső felülete hornyos kialakítású, rugalmas acélból készül, és egy helyen, alkotója mentén fel van hasítva. A kúpos részhez menetes hengeres toldat csatlakozik a kisebb átmérőnél, a menetre rácsvart anya meghúzásával lehet a szorítóhüvely a tengelyre, a csapágyat pedig a szorítóhüvelyre befeszíteni. A hornyosanya biztosítása körírájás biztosítólemezzel történik, a lemez belső foga a szorítóhüvely hasítékában helyezkedik el. A csapágy axiális erőt is fel tud venni, mert vagy meg van támasztva a tengelyen egy vállnak, vagy pedig nincs, ekkor a hüvely és a tengely hengeres felülete között keletkező súrlódás adja az axiális terhelhetőségét. A szorítóhüvely szerelése során változik a csapágyházag, ezért megfelelő befeszítéssel a kívánt hézag beállítható, ez különösen beálló hordógörgő csapágyaknál szükséges.

Kúposülés, hidraulikus szereléssel (3.16. ábra f.). A kúpos tengelycapra a megfelelő kúpos furatú csapágyat nem sajtolás útján kötjük, hanem megfelelő hidraulikus szerkezet segítségével, nagynyomású olajjal, rugalmas alakváltozás által felbővíjtjük a csapágy belső gyűrűjét, és így feloltjuk a kúpos capra. A nyomás megszüntetése után a gyűrű rászorul a csapra. A leszerelés hasonlóan történik.
3.16. ábra: Csapággyűrű rögzítése tengelyhez

Rögzítés lehúzó-hüvellyel (3.16. ábra g.). A kúpos lehúzó-hüvely teljesen hasonló a szorító-hüvelyhez, csak a menetes hengeres toldat a nagyobb átmérőjű kúpos részhez kapcsolódik. A csapágy szétszerelését segíti elő elsősorban a lehúzó-hüvely, amelynek méretei a szabványosítottak. A kúpos hüvelyt a tengelyen készített menetre felcsavart hornyosanya segítségével feszítjük be a csapágy kúpos furatába. Így rögzítjük a hüvelyt a tengelyhez, a csapágyat pedig a hüvelyhez. A befeszítéssel változik a csapágyhézag, ezért a csapágy szerelése során a hézagot mérei kell, illetve az előírt értéket így kell beállítani. A csapágy kiszerelésekor a lehúzóhüvely menetére kell a csapágyanyát felcsavarni, amely meghúzáskor a csapágynak támaszkodva kihúzza a csapágy alól a hüvelyt.

Kúpos hüvellyel rögzítés, hidraulikus szereléssel (3.16. ábra h.). Lényegében azonos az előző és a lehúzóhüvelyes megoldással, csak a csapágy és a tengely között van egy közbenső hüvely, amelyen keresztül történik a hidraulika olaj bevezetése. A gördülőcsapágy furata és a tengelyátmérő között jelentős különbség van (3.16. ábra i.). Az így jelentkező hétágba, különleges kialakítású, nagy rugalmasságú, úgynevezett Spiethszorító- elemet szerelnek be. A csapágy tengelyre rögzítése ennek segítségével történik.

Csapágyak rögzítése házfuratba

A csapágy külső gyűrűjének a házfuratba való rögzítése is többféle módon lehetséges. A továbbiakban szintén néhány jellegzetes konstrukciós kialakítást mutatunk be.
3.17. ábra: Csapágygyűrű rögzítése házfuratban

Csapágyfedél rögzíti a gyűrűt a házfurat vállának (3.17. ábra a.). Ez a megoldás jelentős axiális erő felvételére alkalmas. Hátrány a furatkészítés vállal.

Rögzítés csapágyfedéllel és rögzítőgyűrűvel (furatba szerelhető Seeger-gyűrűvel) (3.17. ábra b.). Az egyik irányban jóval nagyobb axiális erőt tud felvenni a csapágyfedél, míg a rögzítőgyűrű inkább csak tengelyirányú rögzítést ad. Előny az átmenőfurat.

Rögzítés két fedéllel (3.17. ábra c.). Előnye, hogy a csapágyházfurat megmunkálása egyszerű, bár a két fedél költségtöbbletet jelent.

Rögzítés fedéllel és rugózó gyűrűvel (3.17. ábra d.). Ez a megoldás nem osztott ház esetén is használható, mert ilyen esetekben is szerelhető.

Rögzítés rugózó gyűrűvel, osztott csapágyház esetén (a gyűrű csak ekkor szerelhető) (3.17. ábra e.).
3. Gördülőcsapágyak szerelése

A gördülőcsapágy nagypontosságú gépelem, mely a fokozott üzemelési feltételeknek akkor tud megfelelni, ha a gyártást szakszerű szállítás, tárolás és szerelés követi. A gyárilag csomagolt csapágy kiméletes szállításkor nem károsodik. A tárolásra vonatkozó szabályok betartásaival megvédjük a csapágyat a szennyeződéstől, korróziótól és sérüléstől.

A szereléssel kapcsolatos előírásokat pontosan be kell tartani, mind a munkahelyre, mind a munkafolyamatra vonatkozókat.

A csapágyszerelés legfontosabb felszerelései:
- lemezborítású szennyeződésmentes munkapad,
- lágybetétés satu,
- elektromos fütésű olajkád, melegítődoboz, melegítőgyűrű,
- mechanikus-, vagy hidraulikusprés,
- mosóedény, mosófolyadék,
- utánkenő szerszámok, zsírtartály,
- szerelőhüvelyek,
- lehúzószerszámok,
- fém- és gumikalapács,
- mérőeszközök.

A szakszerű be- és kiszereléshez jól felszerelt műhely, megfelelő szaktudás szükséges, emellett, még nagyon lenyeges a csatlakozó alkatrészek helyes konstrukciójára is.
3.18. ábra: Csapágyazás csatlakozó alkatrészeinek helyes konstrukciós kialakításai, hornyok és vezetőcsatornák kialakításai tengelyeken.

A 3.18. ábra a. részén látható tengelyhornyokat a lehúzó-szerszám körmei részére alakították ki, belsőgyűrű szereléshez.

A 3.18. ábra b. részén a házba készített menetes furatok, külső gyűrű kiszereléséhez használt, kinyomócsavaroknak készültek.

A 3.18. ábra c. részén a csapágy külső gyűrűjét támasztó vállon lévő hornyokat a lehúzó-szerszám körmei részére munkálták ki.
A csatlakozó alkatrészek lekerekítései, beszúrásai, letörései is a beépítés és működés jóságát nagyban befolyásolják.
3. Gördülőcsapágyak

Helyes kialakításokat szemléltet a 3.18. ábra d-e. része. A csapágyhoz csatlakozó kialakítások méret-, alak- és helyzetűrési, felületi minősége is befolyásolja a pontos működést és az élettartamot, ezért szerelés előtt ezeket az adatokat mindig ellenőrizni kell.

A hidraulikus szereléshez a tengelyeket hornyokkal és vezetőcsatornákkal kell ellátni az olajbevezetéshez (3.18. ábra f.).

3.19. ábra: Szerelőhüvelyek és csapágylehúzó szerkezetek

A gördülőcsapágyak be- és kiszereléséhez sokféle szerelőszerszámot fejlesztettek ki. A csapágygyártók szerelési- és karbantartási katalógusai részletesen bemutatják a szerszámokat és a szerelési eljárásokat.

Szerelési módszerek típusai:
- mechanikus: kisméretű csapágyakhoz,
- hidraulikus: közepes és nagy csapágyakhoz,
- olajbefecskendezés: közepes és nagy csapágyakhoz,
- melegítéses: közepes és nagy csapágyakhoz.
A szerelés közben a csapágyak gyűrűit közvetlen ütésekkel nem szabad sem a fészekbe, sem a tengelyre kényszeríteni. A legegyszerűbb szerelőszerszámok a szerelőhüvelyek, melyekkel belső- és külsőgyűrűk helyükre kényszeríthetők. A kényszerítőerőt kézi kalapáccsal, vagy sajtoló berendezéssével fejthetjük ki.

A 3.19. ábra a-b. részén csak az egyik gyűrűt támasztja meg a csőszérű szerelőhüvely, a 3.19. ábra c. részén látható szerészam pedig mindkét gyűrűt egyszerre támasztja meg.

Hidegen történő szerelésnél gyakran alkalmaznak mechanikus és hidraulikus préseket az egyenletes sajtolóerő miatt.

Szilárd illesztésű csapágybeépítésnél viszont célszerű a melegítéses technológiát alkalmazni. (Közvetlen, nyílt lángot használni tilos!) A csapágy felmelegítése fűttött olajkádban, száraz melegítődobozban, vagy indukciós melegítővel történhet.

A beszerelt csapágyakat próbajáratással kell ellenőrizni. A jól szerelt csapágy nem zajos, nem melegszik túl (max. 100 °C).

Kúpos furatú csapágyak szerelésének módszerei

Kúpos furatú csapágyak szerelőanyával (3.20. ábra a.), nagyméretűeknél speciális (kombinált) anyával lazíthatók fel (3.20. ábra b.)
Kúpos- és hengeres furatú csapágyak kiszerelésénél gyakran alkalmaznak hidraulikus eljárást. Az olajnyomás az illesztett helyről fellazítja (bőviti) a gyűrűt és kis axiális erővel szerelhető ki a csapágy (3.20. ábra c.).

Tervezési feladatoknál a csapágykiválasztáshoz csapágykatalógust kell használni, de szereléshez, üzemeltetéshez a gyártók speciális katalógusaikkal hasznos útmutatót adnak, ezért célszerű azokat is áttanulmányozni.
4. TÖMÍTÉSEK

4.1. A tömítések célja és fajtái

Legáltalánosabban úgy határozhatjuk meg a tömítésre szolgáló elemek célját, hogy segítségükkel különböző nyomású és különböző közeggel töltött tereket tudunk egymástól elválasztani. Látzólag ez a feladat nem nehéz, viszont a későbbiekben látható lesz, hogy ez a viszonylag olcsó alkatrész milyen fontos feladatot tölt be. Ugyanis ezen egyszerű alkatrészhibájából, vagy nem megfelelő szerkezeti kialakításából igen komoly üzemzavar, más drága szerkezeti rész tönkremenetele, de legalábbis sok bosszúság adódhat.

A tömítések nemcsak különböző közégeket választanak szét, hanem védelmet adnak szennyeződések bejutásával szemben, vagy pedig megakadályozzák a kenőanyag elszivárgását.

A tömítő hatást többféleképpen lehet elérni:

- A tömör zárás mechanikus összenyomás útján jön létre. A tömítettség arányos az összszorítás mértékével.
- Hengeres felületre tömítő élt sorítunk. Ezt a tömítő élt rendszerint végtelemített csavarrugó sorítja a hengerfelületre, a tengelyre, amely forog.
- Forgótengelyek esetében, ha a homlok-felületen két egymáson elcsúszó gyűrűfelület adja a tömítést, csúszógyűrűs tömítéseknél hívjuk.
- A nyomáskülvönböző hatására a meghatározott alakra készített tömítés rugalmas alakváltozást szenved, így a felfekvő felület növekszik. Ezek a rugalmas tömítések tehát lényegében önműködő módon fejtik ki hatásukat.
- Hengeres felületek tömítésére szolgál a rugalmas, felhasított fém- vagy műanyaggyűrű pl. dugattyűgyűrű. Ezek a rugózó hatásuknál fogva szorulnak a tömítendő felületre, és biztosítják a tömítettséget.

A tömítések szempont szerint számos változatot rendelkezünk.

Működési módjuk szerint beszelünk:

- érintkező tömítések (a tömítőanyag és a tömítendő felületek érintkeznek),
- érintkezés nélküli tömítések (vagyis a tömítendő felületek között rés van).

A csatlakozó felületek relációjának megkülönböztetése szerint megkülönböztetjük:

- nyugvó felületek tömítéseit (az egymáshoz csatlakozó vagy a tömítés és a vele érintkező felület között relációt hozzák létre),
- mozgó gépreszek tömítéseit (a felületek között relációt hoznak létre).

A tömítési feladat szerint megkülönböztetünk:

- Folyamatos üzemelést biztosító (funkcionális) tömítések:
 - Ezen tömítések a gépek, berendezések működéséhez elengedhetetlenül szükségesek (pl. kazánfedél-, hengerfejtőmítés); tönkremenetelük működési rendellenességet okoz.
- Védő (komfort) tömítések:
4. TÖMÍTÉSEK

- Ezek a tömítések a gépeket, berendezéseket védik a külső behatásoktól (pl. por, nedvesség), ill. a környezetet védik a szennyeződéstől (pl. kenőanyag-szivárgás); tehát kis nyomáskülönbségek esetén.

- Biztonsági tömítések:
 - Élet-, baleset-, és vagyongazdasági szempontból jelentősek, a legkisebb hibájuk is veszélyt okozhat (pl. félkörben a tömítések tömítése)

4.2. Érintkező tömítések

Az érintkező tömítések feladatai:
- a tömítettség elérése, ill. az áramláson, tömítetlenségből adódó veszteségek csökkenése,
- a mozgó tömítésekénél a fellépő mechanikai veszteségek csökkenése.

4.2.1. Nyugvó felületek érintkező tömítései

A tömítettség elérése történhet a tömítőanyag rugalmas alakváltozásával (gumi és műanyag tömítések), a tömítőanyag képlékeny alakváltozásával (lágy fémtömítések és pl. alumínium, ólom, réz, fehérfém, esetleg lágyvas, ill. acélyűrű).

A nyugvó tömítés a felületek pontos illesztésével, fokozott alakhűségével is megvalósítható, illetve a tömítettség elérésére ritkán pörös anyagot is használnak, ezeknél a tömör zárás adsorpciósi és kapilláris hatással magyarázható.

A tömítésre ható tömítő nyomást létrehozhatja külső erő (pl. laps, profilos és tömèszetes szerű tömítések esetén) vagy pedig elsődlegesen a tömítőköz leg nyomása (önműködő tömítések).

A továbbiakban néhány fontosabb tömítési fajtát ismertetünk.

a) Lapos tömítések

A lapos tömítésekben az összeszorító erő hatására a tömítőanyag rugalmasan (4.1. ábra a.), vagy pedig képlékenyen (4.1. ábra b.) deformálódik. A belső tülnyomással szemben a felületek sikjában keletkező csúsztató feszültség tart egyensúlyt (4.1. ábra c.)

4.1. ábra: A lapos tömítések alakváltozása, egyensúlya és kialakításuk.

A lapos tömítések kialakításukat tekintve lehetnek tárcsák, gyűrűk vagy kerek különböző keresztmetszettel, ezek teljes szélességükkel felfekszkenek a tömítő felületen. (4.1. ábra d.) Az anyagaik jórészt kis alakváltozási ellenállással rendelkeznek (gyapot, kender, azbeszt, stb.) részint viszonylag lágyfémek. Soksor a lágy műanyagot keményebb fémbevonattal látják el, ez rugalmas, míg a lágyabb anyag maradandó alakváltozást szenved.

© Bider Zsolt, SZE www.tankonyvtar.hu
Elvileg a sík felületi tömítésekhez soroljuk azt a tömítést is, amikor a tömör zárást a felületek pontos illesztésével és fokozott alakhűséggel valósítunk meg. A tömítő hatás fokozása érdekében tömítő paszták is alkalmazhatók. A paszták adszorpciós és kapilláris hatás következtében adnak tömör zárást.

Hengerfej tömítés — tulajdonképpen síktömítés — anyagkombinációból készült tömítés. A nyugvó, érintkező felületek közötti tömítés egyik legfontosabb, de legnehezebb területe a belsőégésű motorok hengerfejénél használt síktömítés. A hengerfejtömítés feladata a hengertömb és a hengerfej tereinek és nyílásainak tömítése, egymásközti és a környezethez viszonyított tömítése.

b) Profilos tömítések

Míg a lapos tömítésekknél a tömítő nyomás egy meghatározott felületen oszlik meg, addig ez a nyomás a profilos tömítésekknél viszonylag kicsi, kevésbé definiálható felületre, sokszor pedig csak egy vonal mentén hat. Két nagy csoportjuk van: a lágy és a kemény anyagú profiltömítések. Amennyiben a tömítést gyakran kell bontani, úgy lágy tömítő anyagot célszerű alkalmazni, mely rugalmas alakváltozásánál fogva ismételt összeszerelés után is biztosan tömít.

4.2. ábra: O-gyűrű beépítése és működése (a) és profilos tömítőgyűrű alakok (b)

Profilos lágytömítések leggyakoribb alakja a kör keresztmetszetű gyűrű, vagy a szokásos megnevezéssel O-gyűrű. A rugalmas anyagú O-gyűrút gondosan kialakított horonyban helyezik el, majd külső nyomással összeszorítják. Az üzemi nyomás hatására a gyűrű felveszi a legjobb tömítő hatásnak megfelelő alakot (4.2. ábra a.).
4. TÖMÍTÉSEK

Profilos kemény tömítések anyaga általában lágyvas, acél, vagy vörösréz. Nagyobb üzemi nyomásnál kemény alakos tömítés használható, ekkor a tömítő erő igen kis felületre koncentrálódik és nem szükséges nagy előfeszítő erő. Néhány szokásos egyszerű tömítőgyűrű alakot mutat a 4.2. ábra b. része. Az elfelfekvésű gyűrűk képlekeny alakváltozást szenvednek a beépítéskor (az élek le pompulnak), ezért a felfekvő felület kismeretekben kiszélesedik, a tömítés éle a tömítendő felületekbe benyomódik. A gyűrűk másik csoportja lényegében rugalmas alakváltozást szenved, és emiatt ismételten felhasználható. A gyűrű tömítő felülete lehet kúpos, lencse alakú körívekkel határolt. Ezeket a profilokat igen nagy nyomású és nagy hőmérsékletű kö zig tömítésére használhatjuk.

Lényeges megállapítás az, hogy a tömítő hatás elérése érdekében nem szükséges különleges tömítőanyag. A tömítés ugyanis nem tömítőanyagon múlik, hanem a megfelelő alakadás kérdése, és ezt olyan anyaggal is megvalósíthatjuk, amely általában nem jó tömítőanyag.

c) Önműködő tömítések

Ez esetben a külső előfeszítő erő csak egy kezdeti nyomás előidézésére szolgál. Az érintkező felületeken üzem közben a szükséges tömítő nyomás a közeg nyomásának megfelelően változik. A felhasznált tömítések lehetnek lágy ill. kemény tömítések. A lágy tömítésekkel nagymérvű alakváltozás jellemző, pl. a gumi gyűrű (4.3. ábra a.) csak kevésbé kell elődeformálni, az üzemi nyomás a horony falának szoríja. Ugyanaz a helyzet a kemény tömítőgyűrűknél is. Igen nagy nyomásoknál háromszög (delta) keretszemeszetű fémgyűrűt használunk. (4.3. ábra b.).

4.3. ábra: Önműködő gumi gyűrű (a) és delta fém gyűrűtömítések (b)

d) Tömszelenceszerű tömítések

Ezek a tömítések átmenetet képeznek a tömítőszelencés tömítések felé. A rugalmas tokos kötésekénél rugalmas, gumi alapú tömítőanyagot használnak (4.4. ábra). A tömítő erőt a tömítő persely segítségével tudjuk utánaállítani.

A tömítendő cső, vagy hengeres rúd felületére ható radiális irányú fajlagos nyomóerőt a tömszelenceüregbe helyezett tömítőanyag axiális irányú összenyomása segítségével hozzuk létre.

Nyugvó felületek között ez a tömítéstípus lényegében csak csővezetékek esetében fordul elő.
4.4. ábra: Tömszelenceszerű tömítés

e) Nem bontható vagy csak korlátozottan bontható érintkező tömítések

Két fő csoportja van:
- a hegesztett kötések
- a szilárd illesztőző kötések.

A csövekben ébredő erők átvitelére is alkalmas hegesztett kötésekét nem sorolják a tömítések közé, pedig a hegesztési varratnak tömítési funkciója is van, mely a működés szempontjából igen lényeges. Az erőátvitel nélküli hegesztett kötéseknel a hegesztési varrat tisztán tömítési célra szolgál, mert az erőhatást a karimát összekötő csavarok viszik át.

A szilárd illeszkedésű kötések (szugorkötések) a nagy fajlagos felületi nyomás következtében a két alkatrész között tömítő hatást is kifejtik.

4.2.2. Mozgó gépalkatrészek érintkező tömítései

Mozgó gépalkatrészek tömítése lényegesen nehezebb feladat. Itt három tömítetlenségi út lezárásáról kell gondoskodni:
- a tömítőelem és a hozzá képest elmozduló felület között
- a tömítőanyagon keresztül
- a tömítés, valamint a hozzá képest álló felület között (fő tömítetlenségi út)

A relatív elmozgástól függően a fő tömítetlenségi út, hengeres (radiális tömítések) vagy sugárirányú (axiális tömítések) felületen jöhet létre. A relatív mozgás lehet:
- egyenes vonalú, váltakozó értelmű mozgás
- forgó mozgás
- körív mentén lengőmozgás
- csavaronmozgás

Leggyakoribb feladat a forgómozgást végző felületek tömítési kérdéseinek megoldása. Az itt alkalmazandó tömítések típusuk esetei a tengelyek beépítésénél találhatók. Ezek a tömítések gépekben, berendezésekben használt gépelemek, géprészek védelmét látják el, a környezet, a por, és a korrozív anyagokkal szemben. Másik feladatkörük a kenőolajok kijutásának megakadályozása. Kis és állandó fordulatszámú, egyszerű üzemviszonyok mellett a tömítési feladat megoldása egyszerű. Nehézséget okoz a forgó géprészeknél a nagy fordulatszám, esetleg a nagy radiális elmozdulás, a nagy hőmérséklet és a különösen szennyezett környezet.

Általában a mozgó felületek érintkező tömítéseinek jó működési feltételei:
- gondosan megmunkált felület,
- (egészen lassú mozgásnál $R_{max}=1...5\mu m$, egyébként $R_{max}=1...2\mu m.$),
- kopásállóság, (elérhető betétedzéssel, kemény krómzással stb.),
- futáspontosság, vagy körkörösség és kis értékű ütés,
- megfelelő tömítő hatású anyag,
4. TÖMÍTÉSEK

- (a közeggel szemben tömör, ellenálló és megfelelő mechanikai szilárdságú),
- kellő nagyságú tömörítő (sorító) erő,
- (a tömítés és a tömítendő felületek között).

A mozgó felületek között kell tömíteni, azonban úgy, hogy a súrlódási erő és ezzel a hő fejlődés ne legyen túl nagy értékű.

Radiális tömítések

A radiális tömítések felépítésük, ill. működésük szerint az alábbi csoportokra oszthatók:
- kompressziós (tömszelencés tömítések)
- alaktartó gyűrűstömítések
- önműködő tömítések

Tömszelencés tömítések

 Ezek a tömítések használatosak haladó (alternáló) mozgást végző rudak és forgó-tengelyek tömítésére is, nemcsak nyugvó tömítésre. A kialakításuk általános esetekre már több országban szabványos, egy megoldását a 4.5. ábra mutatja. Szokásos a tömítő persely alsó végét, illetve az üreg alját kúposra készíteni, hogy a tömítést a csavarerő jobban a rúdhoz szorítsa.

4.5. ábra: Tömszelencés tömítések

A tömítések most tárgyalt csoportjába sorolhatjuk a nemezgyűrűs tömítéseket is, melyek első-sorban védőtömítések. Régebben elterjedten használták kisebb fordulatszámú tengelyek zsírkenésű gördülő csapágyházainak tömítésére. Por, szennyeződés, olaj bejutása ellen tömít. Maximálisan 70 °C hőmérsékletig használható. Üzem közben, ha porral telítődik, gyakran a tengely felületét jelentősen megkoptatja. A kétféle kiviteli formáját szemlélteti a 4.6. ábra.

4.6. ábra Nemezgyűrűs tömítések
Alaktartó gyűrűstömítések

Nagy hőmérséklet, igen nagy csúszási sebesség és nagy nyomás esetén használatos az alaktartó gyűrűs tömítés. Anyaga: fehérfémötvözet, különleges bronzok, műszén, szinterfém, műanyagok.

A tömítés felépítése olyan, mint egy tömítőszelence, amelynek üregébe váltakozva L gyűrű és körgyűrű van a tengelyre felfüzve.

Osztott gyűrűnél az osztási hézapot nagy pontossággal kell elkészíteni, a tengelyre való rászorítást rugó végzi. Az osztás, illetve a felhasítás célja a tengelyre történő szerelés megkönnyítése. A szükséges tömítettség elérése érdekében az elem párokat sorba kell kapcsolni. A szereleskor azonban ügyelni kell arra, hogy az osztások ne essenek egybe, mert ez a tömítő hatást rontja (4.7. ábra).

A tömítés működési elve lényegében az, hogy a pontos megmunkálás és a szorítóerő következtében előálló rendkívüli kis rés nagy ellenállást jelent a tömítőközéggel szemben. A gyakorlati alkalmazása leginkább vegyipari gépek kimenő tengelyeinél (kompresszorok, szivattyúk), valamint kenés nélkül üzemeltetett gépeknél szokásos.

Önműködő tömítések

A radiális tömítések harmadik csoportját alkotják az önműködő tömítések. Ezen belül megkülönböztetjük a forgómozgást végző és a haladó mozgást végző géprészek tömítéseit.

Önműködő tömítések forgómozgást végző géprészek

Rugós tömítőgyűrű

Forgótengelyek tömítésére egyik legelterjedtebb megoldás a radiális (karmantyús) tengelytömítés. Tulajdonképpen radiális, lággy anyagú tengelytömítés, amely sok országban szabványosítva van, a rugós tömítőgyűrű nevet viselik, viszont a legismertebb megnevezése a Simmering-tömítés. A tengely felülete és a tömítő ajak közötti tömítő résben ébred a tömítő erő, amelyet vagy maga a rugalmas anyag, vagy pedig a rásegítő csavarrugó fejt ki (4.8. ábra). A tengely és a tömítőanyag egymással kölcsönhatásban van. A tengely forgás közben, a körörösségtől való eltérése, valamint a felületi érdeségből adódó mikro egyenetlenségek miatt a tömítőgyűrű anyagát koptatja, súrlódik vele. Általában vegyes súrlódás lép fel, azonban hidrodinamikus kenőfilm is keletkezhet. A keskeny tömítő résben a tömítettséget kapilláris erők idézik elő, egy bizonyos kis résvestagságig, ez az érték az olaj viszkozitásától is függ, általában néhány ezredmilliméter nagyságú.
4. TÖMÍTÉSEK

4.8. ábra: Karmantyús tömítések

A rugós tömítőgyűrű általában csak kis nyomásra használható, szennyeződés bejutása, vagy leginkább olaj kiszivárgásának megakadályozására. A karmantyú az ajak irányában tömít.

A radiális tengelytömítések két jellegzetes kivitel formában készülnek, fémházás, illetve fémerősítésű elasztomér-burkolatú kivitelben, a tömítőajka a legtöbb esetben elasztomerekből esetleg plasztomerekből készülhet. Leggyakoribb anyaga nitrilbutil gumi (NRB), vagy a Fluorgumi (FPM) esetleg poliakrilat gumi (ACM). Plasztoemberből pedig a teflont (PTFE) alkalmazzák.

Az egyes gyártó cégek igen sokféle változatban állítják elő, katalógusaik részletes ismertetéseket adnak.

A szokásosabb megoldásokat az alábbiak:

- Egy ajakos típusok:
 - elasztomer–ajkas és -borítású
 - szövetbetét-erősítéses elasztomer borítású (4.8. ábra a.)
 - elasztomer–ajkas, fémházas
 - fémházas, teflon tömítőajkas
 - fémházas, kúpos megtámasztással (4.8. ábra b.)
- Porvédőajakos típus (4.8. ábra c.)
- Külső ajakos típus, furatok belső hengerpalástjának tömítésére (4.8. ábra d.)

Újszerű tömítés kialakítások

A tartós tömítőhatás fokozására kifejlesztett egyik tömítőszerkezet a kombinált, duplakarmantyús tengelytömítés (4.9. ábra a.). A kombinált kialakítású duplakarmantyús radiális tengelytömítő gyűrű valójában egy nagyobb hatású porvédőajkas karmantyús tömítés.

Kazettás radiális tengelytömítéseknél a tömítőszerkezet tartalmazza a saját, cserélhető futófelületét, amelyet a belső elasztomerborítás túlfedése rögzít a tengelyhez (4.9. ábra b.). A cserélhető futófelület a tengely kopását hivatott kiküszöbölni. Ezt a tömítést a járművek hátsóhídjaíhoz fejlesztették ki, ugyanis a tengelykopás kiküszöbölésével a hidak élettartama jelentősen növelhetővé vált.

© Bider Zsolt, SZE www.tankonyvtar.hu
Önműködő tömítések haladómozgást végző géprészek

A változó tengelyirányú mozgás esetén adódnak a legkedvezőtlenebb kenési viszonyok. Ez abból adódik, húgy nincs folyamatos mozgás. A löket végén ugyanis mozgásirányt változtat és ekkor, minden esetben újra kell, hogy épüljön a kenőfilm az elmozduló felületek között. Hidraulikában nagyobb tömítőnyomás maximum értékek szükségesek a „száraz dugattyúrűd” elérésére (amikor nincs, vagy nem érzékelhető résveszeség a dugattyúrúdon).

Pneumatikában nagyobb tömítőnyomás maximum értékek szükségesek a „száraz dugattyúrűd” elérésére (amikor nincs, vagy nem érzékelhető résveszeség a dugattyúrúdon).

Pneumatikákban nagyobb tömítőnyomás beállítás indokolt. Pneumatikában ugyanis levégő üzemű közeget alkalmaznak, és az indokolatlanul nagy tömítőnyomás feleslegesen rontaná a működtetés hatásfokát, növelné a tömítés kopását. Itt a réteszesetégi követelmények engedékenyebbek, mivel a levégő „korlátszabály” rendelkezésre áll és a rendszerből kijutva nem károsítja a környezetet.

A használatos tömítések mindegyike láganyagú, beszélhetünk profil tömítésről és ajakos tömítésről.

Profiltömítések

Profiltömítések legegyszerűbb alakja a kör keresztmetszeti O-gyűrűk. Anyaga gumi, vagy gumi rugalmasságú műanyag (elasztomer). A súrlódási viszonyok javítását szolgálja csúszó- gyűrű beszerelése pl. PTFE anyagból. Az elasztomerből készült O-gyűrű és a csúszógyűrű együttesen a tömör zárást jobban elősegíti, emellett a súrlódási tényező mintegy egyharmadára csökkent, és az akadózó csúszás veszélye is csökkent.

Kifejezetten dinamikus igénybevétel esetére használható a T-gyűrű. Előnye az O-gyűrűvel szemben a gyűrű nem csavarodik meg, nagyobb a megengedhető résméret, a gyűrű kevésbé deformálódhat a résbe, ezért lágyabb, kopásállóbb elasztomer is felhasználható (4.10. ábra).
4.10. ábra: T-gyűrű tömítés, terheletlen és terhelt állapotba

Mindegyik típus hátránya, hogy viszonylag nagy résveszteséggel kell számolni, tehát csak olyan esetekben célszerű váltakozó tengelyirányú mozgás tömítésére alkalmazni, amikor a várható jelentős résveszteség megengedhető.

Ajakos tömítések (mandzsetta tömítések)

Az ajakos tömítések tömítettséget a kezdeti, nyomás mentes állapotban a tömítőélen fellépő, szerelési rugalmas túlfedésből adódó kezdeti tömítőnyomás maximum szolgáltatja. Az üzemi nyomás növekedésével a maximális tömítőnyomás az „önműködő tömítőhatás" következtében arányosan növekszik, és ez biztosítja a kellő tömítettséget, illetve a tömítőhatást a működés során. Megkülönböztetünk egyszeres és kettős tömítő hatású (tömítő ajkú) mandzsetta tömítést Az egyszeresnél a radiális tömítetlenségi utat külső beszorítással zárjuk, míg a kettős nél a radiális és axiális tömítetlenség az üzemi nyomás hatására záródik (teljesen önműködő tömítés).

Hidraulika és pneumatika tömítések

Ezek a tömítések kezdetben (az elasztomer anyagok kifejlesztése előtt) növényi és krómcserezű söről készültek. Az elasztomer anyagú Ü-gyűrű a korábbi konstrukciókhoz hasonló ajakkialakításúak voltak, hosszú konzolon lévő tömítőéllal.

A legjellegzetesebb alaptípusoknak különböző fejlesztett változatai vannak (4.11. ábra). Ezek az alaptípusok a V-gyűrűs tömítések (eredetileg egyszerűen tömszelencebe építve), az U-gyűrűs tömítések (2), az O-gyűrűs tömítések (3) és az erősített PTFE dugattyú- (4) és dugatytúrúd tömítések. Az ábra felső sora az alaptípusokat ábrázolja és néhány jellegzetes fejlesztett változatot az oszlopok szemléltetnek. Valójában az ábra harmadik és negyedik sora kompakt tömítéseket ábrázol, ahol a konstrukciók már a funkciómegosztás elvét alkalmazzák: azaz a tömítettséget az elasztomer elemek és célszerűen kialakított rugalmas tömítőéle, míg a tömítés megtámasztását a merevebb, nagyobb szilárdságú támogató elemek látják el. Egyes konstrukciókban a tömítés megvezetésére és a súrlódó felület tisztítására külön vezetőgyűrűt alkalmaznak.
A hidraulikatömítésekknél a nagyobb üzemi nyomásokra ma már megfelelő nyomó szilárdságú támasztó elemet, szövetbetét erősítéses gumit, vagy erősített teflon támasztógyűrűt alkalmazzak. Ezzel akadályozzák meg a tömítés gyors abrazív kopását, elmorzsolódását a tömítés hátoldalán, a tömítendő résnél, a nagy üzemi nyomás és az elmozdulási sebesség együttes fellépésekor.

A műszaki fejlődés során a pneumatika tömítések szerkezeti kialakítása is módosult, pl. az elasztomer U-gyűrűk ajakvastagsága csökkent, ajakhosszúsága relatív megnövekedett.

Axiális tömítések

Csúszógyűrűs homloklap tömítések

A tömítő felületet a forgó és kopó tengelyfelületről a tengelyre merőleges körgyűrű felületre visszük át, amely még kopás esetében sem változtatja alakját. A csúszógyűrűs tömítés rendkívül sokféle szerkezetű lehet, de mindegyiknek négyféle fő alkatrésze van:

- álló tömítőgyűrű, amely az álló házban van, ahonnan a tengely kijön,
- forgó csúszógyűrű, amely a homlokfelületen szorul rá az álló tömítőgyűrűre,
- tömítőgyűrűk (legtöbbször O-gyűrű), amelyek az egymáshoz viszonyított álló alkatrézek között helyezkednek el,
- összeszorító rugó, amely az álló és forgó gyűrük közötti tömítés létrehozásához szükséges összeszorító erő egy hányadát adja.
4. TÖMÍTÉSEK

4.12. ábra: A csúszógyűrűs tömítés alaptípusai

A csúszógyűrűs homloklap tömítést négy alaptípusra vezethetjük vissza:

- a tömítő csúszógyűrű a tengellyel együtt forog és a belső túlnyomás, valamint a rugó-erő szorítja a házba szilárdan beépített jobb oldali gyűrűhöz. (4.12. ábra A típus),
- a túlnyomási tér kivül helyezkedik el a csúszógyűrű (4.12. ábra B típus),
- a tömítőgyűrű a belső túlnyomású térben a házzal együtt áll és a tengelyre felhúzott gyűrű forog (4.12. ábra C típus),
- csúszógyűrű a házban áll, a tömítő felület (súrlódó gyűrű) a nyomás alatti tér kivül helyezkedik el. (4.12. ábra D típus).

Axiális ajakos tömítések

A 4.13. ábrán látható axiális tengelytömítő gyűrűk tömítő ajka tengelyre merőleges homlokfelületre szorul, amelyet célszerű gondosan megmunkálni. Gördülőcsapágy esetében ez adott, a gyűrű a csapágyat megvédi a külső szennyeződéstől, és egyben megakadályozza a kenőanyag kiszivárgását a csapágytérből.

© Bider Zsolt, SZE www.tankonyvtar.hu
4.3. Nem érintkező tömítések

A mozgó, nem érintkező tömítésekkel a tömítőfelületek egyenetlenségeinek hatásos egymásba kapcsolódása nem engedhető meg, azaz meghatározott kis hézagot kell tartani a tömítőfelületek között, bizonyos mértéki tömítetlenséget megengedve. A szivárgási, illetve a résveszteségek csökkentése érdekében a nem érintkező tömítéseket úgy kell kialakítani, hogy a szerkezeti megoldás minél nagyobb áramlási ellenállást biztosítsön.

4.3.1. Hidrodinamikus tömítések (fojtótömítések)

A résen keresztül történő folyadékáramlás kor fellépő veszteségeket használjuk fel tömítésre. A résben a folyadékyomás a súrlódási és örvénylési veszteségek következtében csökken le a külső tér nyomására. Így tömör zárásról itt nem beszélhetünk.

A nem érintkező tömítések esetén a rések között közegáramlás van. Az átfolyási utat úgy kell kialakítani, hogy az áramlási ellenállás minél nagyobb legyen. Megkülönböztetünk sima rést, labirintrést és labirintot. A labirintrést a sima réshez képest egyik vagy mindkét felület szakaszos tagolással készül. A folyadékzárású labirint- és réstömítésekbe a zárófolyadékot túlnyomással vezetik be, majd pedig az innen kiáramló zárófolyadékból az elnyelt tömítőközeget (mérges gáz, gőz) ki kell nyerni, le kell választani.

4.13. ábra: Axiális ajakos tömítés

4.14. ábra: A réskialakítások szokásos változatai

Réstömítés

A réstömítés az esetek döntő többségében kis vastagságú körgyűrű keresztmetszetet jelent bizonyos hossz mentén. A szokásos résvastagság 0,1...0,2 mm, esetleg néhány μm. Az elfolyás csökkentésére a rés hosszúságát amennyire csak lehet, nagyra kell választani, és töreked-
ni kell — amennyire lehetséges — a résben turbulens áramlás előidézésére. A rés lehet henge-
res felületű, kúpos felületek között állandó vagy változó vastagságú. A réskialakítás szokásos

Labirinttömítések

A labirinttömítés olyan egymást követő fojtások sorát jelenti, ahol a folyadékáram energiáját
az örvénylés majdnem teljes mértékben felemesztí. A labirint tömítettsége a fojtási helyek
számától függ.

Helyesen kialakított labirint tömítés esetén, ha a tömítő felületek kölcsönös helyzetüket megtartják, a tömítő hatás — állandó üzemi viszonyok között — változatlan és mentes az elhasználódástól, így nem igényel utánállítást, nem fogyaszt tömítő anyagot.

![4.15. ábra: Labirint kialakítások és labirinttömítések.](image)

A fentiek alapján ezt a tömítési módot közepes nyomású, nagy hőmérsékletű gáz és gőz tömi-
itésénél jöhet leginkább szóba, nagy relatív sebességnél (pl. reakciós gőzturbina stb.), elsősor
ban forgó tengelyek tömítésére használják. Alkalmassá teszi a tengelyek tömítésére használt, kis
rugalmas alakváltozást, nagy relatív sebességet és nagy hőmérsékletet.

A labirint szerkezeti kialakítási elveit a 4.15. ábra szemlélteti.

A 4.15. ábra a. részén a rések fojtási helyének hosszúságát a b méret jelöli, ugyanakkor a
kamra mélységének hosszúságát a T, szélességének a B, a résmagasságának h, a fojtótárcsák dőlésszöge α. Bizonyos határon túl a résméretek nem csökkenhetők, gyártástechnológiai nehézségek, az elemek túlzott
rugalmassal alakítási vízszintes érzelmi el a fojtási helyeken, így az ellenállás lényegesen nagyobb (4.15. ábra b. és c.).
A főjtási helyek kialakítása szerint megkülönböztetünk radiális (4.15. ábra d.) és axiális (4.15. ábra e.) tömítéseket. A radiális tömítés a tengelyirányú hő tágulásra kevésbé érzékeny, míg a tengely radiális kilengései zavart idézhetnek elő. Az axiális tömítésre viszont éppen a tengelyirányú hő tágulás jelent veszélyt, mert esetlegesen összesúrlódás, dörzsöldés állhat elő.

Védőtömítések

A védőtömítések feladata azonos nyomású terek szétválasztása, a szennyeződés bejutása és a kenőanyag kiszivárgása elleni védelem, tehát nyomáskülönbségre nem tömítenek. A szokásos védőtárcsák (4.16. ábra a.), védőgyűrűk (4.16. ábra b-c.), lemezből sajtolt vagy forgácsolt kivitelűék, sík vagy pedig profilos kialakításúak, és lehetnek axiálisak vagy radiálisak. Legtöbbször a tömítő rést zsírral töltik ki, így az áramlás a résben nem lép fel.

![4.16. ábra: Védőtömítések csapágyaknál a) védőtárcsás tömítés b) axiális védőgyűrűs tömítés c) radiális védőgyűrűs tömítés](image)

Folyadékszóró tömítési megoldások

Oļajkenésű csapágyházak esetén az olaj kijutását a tengely mentén a tengely anyagából ki- munkált, vagy pedig a tengelyre szerelt szóró vállak, szóró élek, gyűrűk, tárcsák segítségével akadályozzuk meg (4.17. ábra). Ilyenkor célszerű a leszóródott olajat összegyűjteni és a csapágyházba kis furaton keresztül visszavezetni.

![4.17. ábra: Folyadékszóró tömítések](image)

4.3.2. Hidrosztatikus tömítések

E tömítés esetében a tömítésben a tömítendő közeg nyomásával azonos hidrosztatikus nyomást hoznak létre, vagy magában a tömítésben vagy azon kívül létrehozva ezt a tömítéshez szükséges nyomást. A tömítésben a nyomás kialakításának egyik legjellemzőbb módja a ten-
4. TÖMÍTÉSEK

Minden tömítendő nyomáshoz tartozik egy bizonyos menethosszúság, amelyet a tömítő folyadék kitölt. A záráshoz szükséges nyomást a tömítésen kívül is létre lehet hozni szivattyúval vagy ventilátorral, és ez megfelelő nyomással megakadályozza a tömítendő közeg kiáramlását. Természetesen a tömítésre használt anyagnál elfolyási veszteségek lépnek fel.

5. HAJTÁSTECHNIKA ÉS HAJTÁSOK

5.1. A hajtásról általában

Gyakori gépészeti feladat az, amikor két különböző gépet kell összekapcsolni. Ezeknek a gépeknek általában igen különböző jelleggörbéjük van, és mégis úgy kell a kapcsolatot megvalósítani, hogy az jó hatásfokú és emellett rezgés- és zajmentes legyen. A feladat legtöbbször össze van kötve fordulatszámváltással, vagyis adott áttételt kell megvalósítani, vagy pedig nyomatékváltással, és adott esetben teljesítményelágaztatás is lehet követelmény. Az átalakítás lehet fokozatmentes, de leginkább adott merev fokozatot, áttételt kell betartani. Eközben igen gondosan ügyelni kell, hogy a teljesítményveszteség minél kisebb, vagyis a hatásfok a lehető legnagyobb legyen. Mindezeket a feladatokat olyan gépelemek végzik, amelyeket összefoglalóan hajtőelemeknek, ill. hajtásoknak nevezünk. Az ezekkel a kérdésekkel foglalkozó tudományterület a hajtástechnika.

Az energiafélelcsé váltóztatására átalakítókat használunk, az általános gépépítésben a mechanikai energia átalakítóját játszik a legnagyobb szerepet. Az átalakítandó teljesítményt meghatározó jellemzők szerint megkülönböztetjük a következőket:

- forgatónyomaték vagy fordulatszám átalakítók, ezek a nyomatéket és a fordulatszámot növelni vagy csökkenteni tudják,
- forgatónyomaték átalakítók, amelyek a nyomatéket erősíthetik vagy egy forgó mozgást nem forgóvá, legtöbbször egyenes vonalú mozgássá alakítják át (fogasléchajtás, csavarhajtás), az erő és sebesség átalakítók az erőket vagy a nem forgó mozgásokat változtatják meg (például hidraulikus hengerek, csigasoros emelők).

Az átalakítás megvalósulhat periodikus módon vagy állandó áttételezéssel:

- egyenletes nyomaték, fordulatszám, erő és sebesség átalakítás, az ezeket megvalósító szerkezeteket a gépépítésben hajtóműveknek nevezzük,
- az egyenlőtlenséges erő, fordulatszám és sebesség átalakítását végző szerkezeteket periodikus áttételű hajtóműveknek vagy a nemzetközi szakirodalom alapján mechanizmusoknak nevezzük.

5.1.1. A hajtóművek csoportosítása

A hajtóművek tehát olyan átalakító szerkezetek, amelyek a nyomatékot, az erőt, a fordulatszámot vagy a sebességet legtöbbször állandó áttétellel alakítják át. A hajtóműveket általában egy gép hajtásrendszerébe építik be. Osztályozásukat a hajtástechnikai követelmények szerint végezhetjük el. A hajtásrendszerben elfoglalt helyzetüket, a fordulatszám-, ill. a nyomatékváltoztatásuk szerint csoportosításként a következő lehet:

Állandó áttételű hajtások:

egytengelyű: hengeresfogakerk-hajtás, bolygókerék-hajtás, különleges bolygóhajtás;
párhuzamos tengelyű: hengeresfogakerk-hajtás, dörzskerék-hajtás, vonóelemeles sülődőhajtás, lánchajtás;
egyedi metsző tengelyű: kúpkerék-hajtás, kúpos dörzskerék-hajtás; kitérő tengelyű csigahajtás, csavarkerék-hajtás;
tetszőleges: hidrosztatikus hajtómű.

www.tankonyvtar.hu © Szalai Péter, SZE
Fokozatonként beállítható áttételű hajtások:
- egytengelyű: hengeresfogaskerék-hajtás, bolygókerekes hajtómű;
- párhuzamos tengelyű: hengeresfogaskerék-hajtás.

Fokozatmentesen beállítható áttételű hajtások:
- egytengelyű: hengeresfogaskerék-hajtás, bolygókerekes hajtómű;
- párhuzamos tengelyű: dörzskerékhajtás, vonóelemes súrlódóhajtás, különleges lánchajtás;
- egymást metsző tengelyű: kúpos dörzskerékhajtás.

Fokozatmentesen beállítható áttételű hajtások:
- egytengelyű: hidrodinamikus hajtómű, hidrosztatikus hajtómű;
- párhuzamos tengelyű: dörzskerékhajtás, vonóelemes súrlódóhajtás, különleges lánchajtás;
- egymást metsző tengelyű: kúpos dörzskerékhajtás.

Forgásirányváltó hajtások:
- egytengelyű: bolygókerékhajtás;
- párhuzamos tengelyű: hengeresfogaskerék-hajtás.

Gyakorlatilag minden fokozatmentesen állítható hajtással megvalósítható a forgásirányváltás. A csoportosításból kitűnik, hogy egyik rendezőelv az áttétel megvalósításának módja, a másik a tengelyelrendezés jellege.

A hajtóművek tulajdonságai közé tartozik még az is, hogy a nyomaték-, ill. forgómozgás-átvitel történhet erőzárással (súrlódási erő) vagy alakzárással is (kényszerkapcsolat, fogazatok stb.). A kerekekkel megvalósított hajtásátvitelekhez soroljuk a dörzskerékhajtásokat (erőzáró kapcsolat), a fogaskerekeket (alakzáró kapcsolat), de a hajtóművek közé tartoznak a vonóelem és hajtások is, ezek lehetnek súrlódó hajtások és alakzáró (lánchajtás, fogazott szíjhajtás) hajtások.

5.2. Dörzskerékhajtások

Két párhuzamos vagy kitérő helyzetű tengely között a teljesítmény átvitele két érintkező forgástesttel, súrlódás révén történik. A kellő összeszorító erő biztosítása szükséges a hajtás működéséhez. Az átvitt nyomaték függ még az érintkező anyagpárra jellemző súrlódási tényezőtől, és a súrlódási erő támadáspontjától. A dörzshajtás másik elnevezése is beszédesen utal a működésre, erőzáró gördülőhajtás.

Alkalmazható különböző dobok hajtására, ilyen a golyósmalom, vagy az élelmiszeripari keverőgép. A nyomatőkben a lap továbbítására is ezt használjuk. A járművek kerekei is felfoghatóak, mint dörzskerekek, hajtott vagy nem hajtott módon. A szállítószalagok vezető görögöi is hasonló kialakításuk például a bányászati alkalmazásban.

5.2.1. Erőhatások a dörzskerékhajtásban

Az 5.1. ábra két sima tárcsa közötti nyomatékátvitel erőhatásait szemlélteti. Ha a tárcsákat F_n erővel összeszorítjuk, akkor a maximális átvihető kerületi erő, a tapadási súrlódási erő lesz:

$$F_k = \mu \cdot F_n.$$

Ha csúszást nem tételezünk fel, akkor a kerületi sebességek:

$$v = r_1 \cdot \omega_1 = r_2 \cdot \omega_2,$$

az áttétel pedig:
$$i = \frac{n_2}{n_1} = \frac{\omega_2}{\omega_1} = \frac{n_2}{n_1}.$$

$$F_n = v \times \mu F_n$$

5.1. ábra: Dörzshajtás erőhatásai

Mivel azonban a gyakorlatban a súrlódó tárcsák közt a csúszásmentes gördülés ritkán valósul meg, a valóságos áttétel a csúszás szlip figyelembe vételével:

$$i = \frac{n_1}{n_2} = (1 - s) \frac{d_2}{d_1},$$

ahol: s az úgynevezett szlip-tényező, ez gyakorlatban nem éri el a 3%-ot,

A hatásfok pedig a következő módon határozható meg:

$$\eta = \frac{P_2}{P_1} = 1 - s,$$

teht \(\eta \approx 0.97. \)

A dörzskerékhajtás előnyei:
- egyszerű felépítés,
- kis tengelytáv,
- karbantartást alig igényel,
- a megsúszás lehetősége túlterhelés elleni védelmet nyújt,
- könnyen megvalósítható a fokozat nélküli áttétel,
- alacsony zájszintű üzem.

A dörzskerékhajtás hátrányai:
- a nyomatékátvitelhez viszonylag nagy összeszorító erő szükséges,
- nagy csapágyterhelések lépnek fel,
- csúszás okozta kopás befolyásolja az élettartamot.

5.2.2. A dörzskerékhajtás kialakításának irányelvei

Az átvihető nyomaték az érintkezésben levő anyagok, azok felületi kiképzése, geometriai kialakítása, valamint az összeszorító erő függvénye. Az edzett acél — edzett acél anyagpár esetén nagy megengedett érintkezési feszültséggel (Hertz-feszültség) és viszonylag kis súrlódási
tényezővel lehet nyomatékot átszármaztatni, például a vasúti járművek esetében. Amennyiben az acéltárcsákat olajjal kenjük, és vegyes súrlódási állapotot feltételezünk, \(\mu = 0,06 \) értékkel lehet számolni. A viszonyok vizsgálata során sokszor indokolt az elaszto-hidrodinamikai (EHD) kenéselmélet összefüggéseinek a felhasználása is. Az összeszorító erő nagyságát adott nyomatékátvitel esetén úgy lehet csökkenteni, hogy a tárcsákat nagyobb súrlódási tényezőjü anyagból készítsük vagy az acéltárcsákat bevonattal látjuk el.

A szokásos súrlódási tényező értékek:
- öntöttvas – öntöttvas: 0,1…0,15
- öntöttvas – bőr, papír: 0,15…0,3
- öntöttvas – fa: 0,2…0,3
- öntöttvas – műanyag: 0,1…0,15

A felületi terhelés megengedett értéke öntöttvas - öntöttvas párosítás esetén: \(k_{\text{meg}} = 0,3…0,7 \) [N/mm²]; öntöttvas - többi anyag esetén: \(k_{\text{meg}} = 0,2…0,3 \) [N/mm²] lehet. Acél dörzskerekek esetén a számítás pontos elvégzésekor az érintkezési feszültségeket kell kiszámítani.

Az 5.2. ábra különböző tárcsamegoldásokat szemléltet. Általában a kisebbik tárcsán szokták kialakítani a dörzsfelületet, bőrből, papírból vagy műanyagból.

![Diagram](https://via.placeholder.com/150)

5.2. ábra: dörztárcsák

Igaz gyakran használunk gumi vagy gumiszerű anyagú dörzskereket, amelyet gondosan megmunkált öntöttvas vagy acél tárcsával kapcsolunk. A súrlódási tényező nyugodt járású, egyenletes üzemben \(\mu = 0,7 \)-nek vehető, ami precis rendszerben akár \(\mu = 0,9 \) is lehet, gyakori indítás esetén \(\mu = 0,5 \), nedves üzemben \(\mu = 0,3 \) lehet. Az ilyen típusú dörzskerekekhez csak viszonylag kis értékű összenyomómérő engedhető meg, mert az alakváltozási munkából keletkező hőmennyiség nem melegítheti fel a gumi 60…70 °C-nál nagyobb hőmérsékletre. A használt gumit 70…90 Shore-keménységű, kopásálló, hőálló és öregedésre nem hajlamos, kiemelendő a szintetikus gumi anyagok közé a polikloroprén, és a természetes gumi is gyakori alapanyag. Tiszta és keverékként is alkalmazzuk a gumi anyagokat. Kivitelezett gumi dörzskerekről megoldásokat az 5.3. ábra szemlélteti. A merevseg és a hőelvezetés javítására a gumigyűrűt közvetlenül az acéltárcsára vulkanizáljuk, vagy pedig az acélbetétre vulkanizált gumigyűrűt felsajtoljuk a tárcsára.
5.2.3. Hornyos dörzskerék

Az összeszorító erő csökkentését nagy súrlódási tényezőjű bevonatanyag felhasználásával lehet elérni, vagy a súrlódó felületek ék alakú hornyos kialakításával növeljük az összeszorító erő hatását (az ékszíjakhoz hasonló hatást érünk el). Az 5.4 ábra egy hornyos dörzskerékhajtást ábrázol.

5.4. ábra: hornyos dörzskerék erőhatásai

Ha a tárcsára ható összeszorító erő F_i, akkor a horonyfelületre merőleges F_n erővel kifejezve:

$$F_i = 2 \cdot F_n \cdot \sin \gamma,$$

a kerületi erő pedig:

$$F_i = 2 \cdot \mu \cdot F_n = \frac{\mu}{\sin \gamma} F_i = \mu \cdot F_i.$$

A súrlódás látszólagosan megnövekszik és kisebb összeszorító erő elég azonos kerületi erő átviteléhez.

A hornyos dörzskerékhajtás hátránya, hogy csak az áttételnek megfelelő átmérőkhöz tartozik tiszta gördülés, minden más érintkezési pontban csuszás van, ez pedig hő fejlődést és nagyobb kopást jelent.

5.2.4. A dörzskerékhajtás méreterezése

A dörzszhajtás által átvitt nyomaték meghatározásánál célszerű bizonyos csuszás elleni biztonsággal számítani. A kimenő teljesítmény:

$$P_z = P_i \cdot \eta,$$
A Continental dörzskerekekhez az n biztonsági tényezőt egy a kapcsolódó kerekek méretétől függő és egy üzemi tényezővel adja meg.

\[n_{bizt} = \frac{c_1}{c_2}, \text{ahol} \quad c_1 = \frac{1}{\sqrt{1 + \frac{d_1}{d_2}}} \]

Ahol \(d_1 \) a kisebbik kerék átmérője. Az üzemi tényező \(c_1 \) értéke 1 és 1,8 közötti értéket vehet fel annak függvényében, hogy milyen gyakori a rendszer leállítása, elindítása, és függ még a napi munkaóra mennyiségtől, valamint az üzem közben várható lökés-szerű terhelésektől.

A kerületi erő:

\[F_k = \frac{2 \cdot T_1}{d_1} = \frac{P_1}{\pi \cdot d_1 \cdot n_i} \]

A súrlódási erő:

\[F_n \cdot \mu = S \cdot F_k \rightarrow S = \frac{F_n \cdot \mu}{F_k}, \]

ahol: a csúszás elleni biztonsági tényezőt \(S = 1,2 \ldots 2 \) között választjuk.

A felületi terhelésre fémtárcsák, kerekek esetében a Hertz-egyenlet szerinti érintkezési féyszültségek az irányadók, a puhább, nagyobb súrlódási tényezőjű anyagoknál Stribeck szerint ellenőrizzük a érintkezési nyomást. A Hertz-féle érintkezési feszültség:

\[\sigma_H = \sqrt{\frac{K_{\tilde{g}} \cdot F_n \cdot E}{2 \cdot \pi \cdot (1 - \nu^2) \cdot b \cdot \rho_r}} \leq \sigma_{Hmeg}, \]

ahol: \(K_{\tilde{g}} \) az üzemi tényező, \(E = 2E_1E_2/(E_1 + E_2) \) a redukált rugalmassági tényező, \(\rho_r = \rho_1 \rho_2/ (\rho_1 + \rho_2) \) a redukált görbületi sugár, \(\nu \) a Poisson tényező, \(b \) a dörzstárcsa aktív szélessége.

A Stribeck szerinti érintkezési nyomás:

\[p = \frac{K_{\tilde{g}} \cdot F_n}{d_1 \cdot b} \leq p_{meg}, \]

A Hertz-féle érintkezési feszültségek, valamint a Stribeck szerinti érintkezési nyomás megengedett értékei segéd táblázatokban találhatók különböző anyagokra vonatkozóan.
5.2.5. A dörzskerékhajtások alkalmazásai

Az 5.5. ábra szemléletet három szerkezeti kialakítást dobhajtásra. A kiemelt kerék a hajtó dörzskerék, kivétel a c) esetben, ahol csak áthajtó szerepű.

Az 5.6. ábra a) képe egy keskeny tárcsás, viszonylag kis nyomatékátviteli hajtást szemléltet, amelynél a vízszintes tengelyen eltolható kis tárcsával az áttétel és forgásirány is változtatható. Egy frikciós csavarsajtó orsójának forgatására szolgáló dörzshajtást mutat be az 5.6. ábra b) képe. Ez egy kettős dörzshajtás, ahol az állandó irányban forgó vízszintes tengely jobbra vagy balra toltásával jön létre dörzskapcsolat a vízszintes síkú kerékkel, amely a függőleges csavarmenetes sajtőtengelyt forgatja. Így a tengely két irányban tud forogni a sajtolőütemnek megfelelően.

5.5. ábra: Dörzskerekes hajtások, a) külső, b) belső és c) dörzskerekes áthajtás

5.6. ábra: Áttétel- a) és forgásirány váltó b) dörzshajtások

A dörzshajtások általában állandó áttételt adnak, de könnyen megvalósíthatunk fokozatmentes áttételű hajtást is. Az ide vonatkozó anyagot a későbbi 5.6.1. fejezet tárgyalja.

5.3. Vonóelemes hajtások

Két vagy több forgó elem között a mozgás- és az energiaátvitel húzóerővel terhelt vonóelemmel valósul meg. A forgó szerkezeti elemek sima, hornyos vagy fogas tárcsák lehetnek. A teljesítmény átvitel erőzáró, vagy alakzáró módú. Az alábbi összesítő táblázatban az egyes hajtás típusoknak a főbb jellemzőik láthatók. Ide tartozik még a drótköteles hajtás is, de annak tárgyalására nem térünk ki. Egy tipuson belül a fizikai jellemzők maximális értékei egyszerre nem érhetőek el, az okok a különböző anyagok változatos tulajdonságaiiban vannak.
A járműipari alkalmazásokban a lapos heveder igen ritka, az ékszijak közül a leggyakoribb az ékbordás (hosszbordás), valamint a fogazott ékszíj, amit a motorhoz kapcsolódó vízpumpa, generátor, klíma kompresszor, szervó pumpa hajtására használnak. A fogasszíj, és a görgő-s-ill. fogaslánc a motor vezérmut hajtó vonóeleme általában.

5.4. Erőzáró vonóelemelem hajtások

A vonóelemelem hajtások domináns képviselője a szíjhajtás. A végtelenített szíj és a hajtó, illetve hajtott tengelyen levő szíjtárcsák között erőzáró kapcsolat van. A vonóelem és a tárcsák közötti tapadás, a kapcsolatban részt vevő anyagpárra jellemző súrlódási tényező kritikus része a hajtásnak. A nyomaték átviteléhez szükséges, hogy a szíjtárcsa és a szíj között súrlódó erő jöjjön létre, amit a szíj és a szíjtárcsa között előfeszítéssel keltett normál erő okoz. Leggyakrabban párhuzamosan, de esetenként a nagyobb tengelytávú tengelyek között tetszőleges szöget záróan a teljesítményt a vonóelem közvetíti. Az alakzáró vonóelemelem hajtásokról az 5.5. fejezetben van szó.

5.4.1. A szíjhajtások előnyei és hátrányai

A szíjhajtások a legjobban elterjedt hevederes hajtások. Kiválasztásuk az előnyök, és hátrányok mérlegelése alapján történik. Általában a fogaskerék és lánchajtással hasonlítjuk Őket össze.

Előnyök:
- rugalmas erőátvitel,
• csendes, lőkésmentes és rezgéscsillapító hajtás,
• egyszerű, olcsó kivitelezés,
• kenésnélküli, egyszerű karbantartás,
• nagyobb áttételek is megvalósíthatók egy fokozatban,
• magas kerületi sebességek.
• egyszerre több tengely is hajtható, amik különböző forgásértelműek lehetnek,
• kedvező hatásfok (90…98%)

Hátrányok:
• a „szlip”, esetleg szíjcsúszás miatt az áttétel nem állandó,
• nagy tengely- és csapágyterhelés,
• a fogaskerék hajtással szemben nagyobb helyigény,
• korlátozott környezeti hőmérséklet,
• a környezetből származó szennyeződés (por, nedvesség, olaj, stb.) hatással van a súrlódásra.

5.4.2. A szíjak fajtái és anyagai
A szíjhajtásoknál a szíj fajtát, valamint a szíj anyagát úgy kell megválaszolni, hogy ez megfeleljen az üzemi terhelésnek és környezetnek. Elsődleges a szíj szilárdsága, a kerületi és az előfeszítő erőből származó feszültség elviseléséhez. A szíj és a tárcsa között jó súrlódási feltételeket kell elérni, hogy a kerületi erőt lehetőleg kis előfeszítésnél képes legyen átvinni a hajtás. A szíj anyagának ellen kell állnia az üzemi környezet hatásainak.

Kivitelük lehet lapos heveder (vagy szíj), normálékszíj, keskenyékszíj, fogazott ékszíj, többsoros ékszíj, széles ékszíj, kettős ékszíj és ékbordás (hosszbordás) ékszíj.

A szíjak legtöbbször több rétegből, anyagból állnak. A szíjak ágyazóanyaga lehet természetes és szintetikus gumi, műanyag (poliuretán, poliamid, polikloroprén), bőr, amik tisztán, és keverékként is használhatóak. A bevonatnál a következőkben szóba jöhet még textil (pamut, állatszőr, selyem, műselyem, nylon). A húzott szalak lehetnek kordból, aramidból, poliamidból, poliuretánból, szénből vagy poliészterből. A fogazott ékszíjak jellemzően tartalmaznak még a keresztirányú merevítés végét rövid, apró műanyag szálatak.

A jelentősebb gyártók a szíjak szinte minden fajtáját kínálják, egy-egy típust akár többféle anyagkialakítással, így elérve a hosszabb élettartamot, vagy csendesebb működést, nagyobb terhelhetőséget. Pl. Contitech, Gates, Optibelt, Hutchinson, Bando, Roulunds.

5.4.3. A szíjhajtások alkalmazásai, hajtások elrendezései
A különböző hajtáselrendezések a szíjfajtáktól is függnek. Leggyakoribb a nyitott hajtáselrendezés (5.7. ábra a) képe), amelyet minden szíjfajtával megvalósíthatunk. A hajtó és hajtott tárcsa forgásértelme ez esetben egyező. A hajtó-tárcsa forgásértelmét úgy kell megválasztani, hogy a laza ág felül legyen, így belágása növeli az átfogási szöget és ezzel a nyomatékátvitelt.

Az átfogási szög növelését szíjfeszítő, terelő görgővel, szíjfeszítő szerkezettel lehet egyszerűen elérni, ami a előfeszítést is biztosítja (5.7. ábra b) és c) képe, autóipari példák).
A szíjhurkokt legtöbbször a két párhuzamos tengely egymáshoz képesti széthúzásával feszítjük meg. Ezt megvalósíthatjuk az egyik tengelyre szerelt tárcsa feszítő csavaros beállításával, vagy feszítőkocsi segítségével is.
Több tengely hajtására a laposszíj, a kettős ékszij, az ékborás ékszij (5.7. ábra b) és c) képei) alkalmazható. Ha a forgásértékelem is bizonyos megkötéseket ad, a tengelyek nem párhuzamosak, akkor fordítógörgős, ill. terelőtárcsás hajtáserendezést alkalmazunk.

5.7. ábra: Szíjhajtás elrendezések, a) nyitott, b) feszítő és vezető görgős, c) két forgásértelmű hajtás

5.4.4. A szíjhosszúság, tengelytáv meghatározása

A szíj hosszúságát a β átfogási szög ismeretében határozhatjuk meg. Jagyuzzuk meg, hogy az átfogási szög az áttétel és a tengelytávolság függvénye. A szokásos nyitott hajtások esetén az áttétel i_{max} ≤ 5. Az 5.8. ábra szerint β = 180° - 2α.

5.8. ábra: szíjhajtás jelöléseinek értelmezése

A pontos szíjhosszúság adott tárcsaátmérőn és tengelytávolság esetén (α radiánban! , α [rad] = α [°] \pi \over 180 [°]):

\[L = 2 \cdot a \cdot \cos \alpha + \frac{\pi}{2} (d_1 + d_2) + \alpha \cdot (d_2 - d_1). \]

Jó közelítéssel,

\[L \approx 2 \cdot a + \frac{\pi}{2} (d_2 + d_1) + \frac{(d_2 - d_1)^2}{4 \cdot a}. \]

A feladat gyakran fordított, amikor az adott tárcsaátmérőkhöz és szíjhosszhoz kell a tengelytávolságot kiszámítani, ekkor az előbbi összefüggésből kiindulva:

\[a \approx p + \sqrt{p^2 - q}, \]
ahol: $p = 0,25 \cdot L - 0,393 \cdot (d_2 + d_1)$ és $q = 0,125 \cdot L \cdot (d_2 - d_1)^2$.

5.4.5. A szíjra ható erők és a feszültségviszony

A szíjat terhelő erőhatások ismerete a szíjhajtások valamennyi erőzáró típusának méretekzezéshoz felhasználható kisebb módosításokkal. Az 5.8. ábra szerint az alsó fesző laza ágban ható F_{tl} erő nagyobb, mint a felső laza ágban ható F_{t2} ágerő. Ha a szíjesúsztástól eltekintünk, akkor a két szijtárcsa kerületi sebessége megegyezik

$$v_1 = v_2 = d_1 \cdot \pi \cdot n_1 = d_2 \cdot \pi \cdot n_2.$$

A hajtást jellemző áttétel:

$$i = \frac{r_2}{r_1} = \frac{d_2}{d_1} = \frac{n_1}{n_2} = \frac{\omega_1}{\omega_2} = \frac{T_2}{T_1},$$

ahol: az átvitt nyomaték $T_1 = F_k \cdot r_1$, ill. $T_2 = F_k \cdot r_2$, a kerületi erő pedig:

$$F_k = F_{\text{tl}} - F_{\text{t2}}.$$

A kerületi erő mindkét tárcsa és szíj felületén egyenletesen elosztva hat és az ébredő elemi súrlódási erők összegével egyenlő.

Az átvitt teljesítmény a kerületi erő és kerületi sebesség szorzata:

$$P = F_k \cdot v_1 = F_k \cdot v_2 = F_k \cdot v.$$

A teljesítmény és a nyomatékok összefüggése:

$$P = F_k \cdot 2 \cdot r \cdot \pi \cdot n = T \cdot \omega.$$

A két ágerő különbsége a tárcsáról a szíjra, ill. a szíjról a tárcsára súrlódás által átvitt kerületi erőt képezi. Kötélsúrlódást (heveder súrlódást) feltételezve a két ágban ható erők között a következő összefüggés áll fenn:

$$F_{\text{tl}} \leq F_{\text{t2}} \cdot e^{\mu \cdot \beta},$$

ahol: μ a súrlódási tényező,

β az átfogási szög radiánban.
5. ábra: szíjelemre ható erők

Az 5.9. ábra alapján vizsgáljuk a szíjelemre ható erőket. A kerületen az erő fokozatosan F_{t2}-ről F_{t1}-re növekszik. Egy elemi $d\phi$ középponti szög középponti szöghoz tartozó szíjelem mindkét végét végére F_t és F_t+dF_t érintőleges ágerők hatnak. Ezeknek az erőknak a sugárirányú összetevője dF_r. Ha a dF_t elemi erőnövekménytől eltekintünk, akkor:

$$dF_c = 2 \cdot F_t \cdot \sin \frac{d\phi}{2},$$

a kis szögek szinusza pedig magával a szöggel vehető egyenlőnek, ezért:

$$dF_c \approx F_t \cdot d\phi.$$

A legtöbb esetben a fordulatszám és a kerületi sebesség nem elhanyagolható, ennek következtében fellépő centrifugális erő csökkenti a heveder tárcsára való ráfeszülését, egyben a szíjágban húzóerőt okoz, amely a szíjban ébredő húzóerőfeszültséget növeli. A szíjelemre ható dF_c centrifugális erő arányos a szíjlem tömegével és a centripetális gyorsulással

$$dF_c = dm \cdot r \cdot \omega^2 = \rho \cdot b \cdot s \cdot r \cdot d\phi \cdot \frac{v^2}{r} = \rho \cdot v^2 \cdot b \cdot s \cdot d\phi,$$

ahol: b a szíj szélessége, s pedig a szíj vastagsága.

A centrifugális erő ellensúlyozására a szíjágakban ébredő F_{tc} erők:

$$dF_c = 2 \cdot F_{tc} \cdot \sin \frac{d\phi}{2},$$

ill. $dF_c \approx F_{tc} \cdot d\phi$.

Az előző egyenletekből:

$$F_{tc} = \frac{dF_c}{d\phi} = \rho \cdot v^2 \cdot b \cdot s.$$

A szíjelemet a dF_c erő a tárcsához szorítja, míg a dF_c erő ezt a ráfeszülést lazítja, a felületre merőleges erődő erő tehát:
\(dF_a = dF_r - dF_c = F_i \cdot d\varphi - F_{ic} \cdot d\varphi = (F_i - F_{ic}) \cdot d\varphi \).

A nyomatékátvitelt a sürlődás biztosítja, az elemi sürlődási erő a felületre merőleges (normál) erő és a sürlődási tényező szorzataként kapjuk:

\[dF_i = \mu \cdot dF_a = \mu \cdot (F_i - F_{ic}) \cdot d\varphi. \]

A sürlődási tényezőt állandónak véve a fenti differenciálegyenlet megoldása, a változók szétválasztása után, integrálással:

\[\int_{F_{i2}}^{F_{i1}} \frac{dF_i}{F_i - F_{ic}} = \mu \int_0^\beta d\varphi. \]

Integrálás és a határok behelyettesítése után:

\[\ln \frac{F_{i1} - F_{ic}}{F_{i2} - F_{ic}} = \mu \cdot \beta, \quad \text{ill.} \quad \frac{F_{i1} - F_{ic}}{F_{i2} - F_{ic}} = e^{\mu \beta} = \varepsilon. \]

Az \(\varepsilon = e^{\mu \beta} \) értéket feszültségi viszonynak nevezzük, ez fejezi ki az ágak megfeszülésének viszonyát. A sürlődási tényező és az átfogási szög ismeretében meghatározhatók a szíjágakban ható \(F_{i1} \) és \(F_{i2} \) erők:

\[F_{i1} - F_{i2} = F_k, \quad \text{ill.} \quad (F_{i1} - F_{ic}) - (F_{i2} - F_{ic}) = F_k. \]

Ebből:

\[(F_{i2} - F_{ic}) \left(\frac{F_{i1} - F_{ic}}{F_{i2} - F_{ic}} - 1 \right) = F_k, \]

\[F_{i2} - F_{ic} = \frac{1}{\varepsilon - 1} F_k, \quad \text{és} \quad F_{i2} = \frac{1}{\varepsilon - 1} F_k + F_{ic}, \]

\[F_{i1} - F_{ic} = \frac{\varepsilon}{\varepsilon - 1} F_k, \quad \text{és} \quad F_{i1} = \frac{\varepsilon}{\varepsilon - 1} F_k + F_{ic}. \]

5.4.6. A szíjban keletkező feszültségek

A szíjban egyrészt az \(F_{i1} \) és \(F_{i2} \), fesztes és laza ágakban ható húzó igénybevétel, másrészt a szíjnak a tárcsára való ráhajlításából származó hajlító igénybevétel idő elô feszültséget. A húzó igénybevétel szempontjából az \(F_{i1} \) húzóerô, a hajlító igénybevétel szempontjából pedig, a kisebbik tárcsa átmérôje a mértékadó.

Az \(F_{i1} \) erô, a fesztes ágban ható erô, és a szíj keresztmetszete \(A = b \cdot s \) ismeretében a szijkeresztmetszetben keletkező feszültségeket meg lehet állapitani:

\[\sigma_1 = \frac{F_{i1}}{b \cdot s} = \frac{\varepsilon}{\varepsilon - 1} \cdot \frac{F_k}{b \cdot s} + \rho \cdot v^2. \]
Hasonlóan a laza ágban keletkező húzófeszültség:

\[\sigma_2 = \frac{F_{i_2}}{b \cdot s} = \frac{1}{\varepsilon - 1} \cdot \frac{F_k}{b \cdot s} + \rho \cdot v^2, \]

mindkét összefüggésben a centrifugális erő által előidézett feszültség:

\[\sigma_c = \frac{F_{k_c}}{b \cdot s} = \rho \cdot v^2 \]

is szerepel.

A konvenciós hajtás célja tengelyek közötti nyomatékátvitel, ill. kerületi erő átvitele. Ez a hasznos erőhatás, a többi erő ennek érdekében keletkezik. Ennek értelmében a hasznos feszültség:

\[\sigma_F = \frac{F_k}{b \cdot s}. \]

Ezzel kifejezve a \(\sigma_1 \) és \(\sigma_2 \) feszültségeket:

\[\sigma_1 = \frac{\varepsilon}{\varepsilon - 1} \sigma_F + \sigma_c, \quad \text{ill.} \quad \sigma_2 = \frac{1}{\varepsilon - 1} \sigma_F + \sigma_c. \]

A hajlító igénybevétel okozta feszültséget a görbületi sugár és a hajlító nyomaték összefüggéséből határozzuk meg:

\[\frac{1}{r} = \frac{M}{I \cdot E}. \]

Mivel a heveder vastagsága \(s \) a tárcsák sugaránál lényegesen kisebb, így a hajlítófeszültséget a Navier-képlet segítségével fejezhetjük ki:

\[\sigma_3 = \frac{M}{I} e = \frac{E}{2 \cdot r} s = E \cdot \frac{s}{d_1}. \]

Mivel a kis tárcsán keletkezik a nagyobb hajlítófeszültség, ezért célszerű a képletbe a \(d_1 \) átmérőt behelyettesíteni.
A feszültségek eloszlását az 5.10. ábra mutatja. A legnagyobbb feszültség a kis tárcsa felfutó feszes ág keresztmetszetében keletkezik:

\[\sigma_{\text{max}} = \sigma_1 + \sigma_3 = \frac{\varepsilon}{\varepsilon - 1} \sigma_F + \sigma_c + \frac{E}{d_1} s \leq \sigma_{\text{meg}}. \]

A szíj méretezés lényege, a \(\sigma_{\text{meg}} \) megengedett feszültség ismeretében, a hasznos feszültség meghatározása:

\[\sigma_F = \frac{F_k}{b \cdot s} = \frac{\varepsilon - 1}{\varepsilon} \left(\sigma_{\text{meg}} - \frac{E}{d_1} s - \rho \cdot v^2 \right). \]

5.4.7. A szíjcsúszás, hatásfok és az áthúzási fok

A szíj és a tárcsa között erőzáró kapcsolat biztosítja a nyomaték átvitelét. A szíj jó felfekvését a két tárcsa tengelyének egymáshoz viszonyított széthúzással biztosítjuk, ekkor a szíjban erők lépnek fel. Nyomatékátvitelénél a feszes és a laza ágban különböző erők hatnak, az \(F_{11} \) és az \(F_{12} \). Mivel az ágerők különbözőek, a hozzájuk tartozó rugalmas megnyúlás is különböző. Ezért a hajtótárcsára való felfutás és a szíj lefutása között a rugalmas nyúlás különbségének megfelelő relatív elmozdulást kénytelen végezni a hevéder a tárcsához viszonyítva. A megnyúlás különbség:

\[\Delta \lambda = \frac{F_{11} \cdot l}{A \cdot E} - \frac{F_{12} \cdot l}{A \cdot E}, \]

ahol: \(l \) a \(v_1 \) sebességnek megfelelő hevederhosszúság, \(A \) pedig a heveder keresztmetszete.

A rugalmas csúsztás, vagyis a „szlip”:

\[s_r = \frac{v_1 - v_2}{v_1} = \frac{\Delta l}{l} = \frac{F_{11} - F_{12}}{A \cdot E} = \frac{F_k}{A \cdot E} = \frac{\sigma_F}{E}. \]
A rugalmas csúszás annál nagyobb minél nagyobb kerületi erőt kívánunk átvinni, és minél kisebb az E rugalmassági tényező – minél rugalmasabb a szíj.

A szíjtárcsák kerületi sebességének különbsége nem azonos a szíjágak sebességkülönbségével, mert mindkét tárcsa érintkezésben áll mind a feszes, mind pedig a laza szíjággal. Ezáltal a tárcsák kerületi sebessége kisebb, mint a szíjágak sebessége. A gyakorlatban a kerületi sebességekre vonatkozó szlip általában nem nagyobb 1% értéknél, de 3% értéig még fenntartható az üzem.

A szíjcsúszás miatt a hajtás nem veszteségmentes. A hajtó és hajtott tengely közötti teljesítménykülönbség a veszteségteljesítmény:

$$P_v = P_1 - P_2,$$

a hatásfok pedig:

$$\eta = \frac{P_2}{P_1} = \frac{v_2}{v_1} = 1 - s.$$

A csúszás okozta veszteségen túl számolni kell még a légellenállás, és a csapágyazás veszteségeivel is, így a hajtás összességében 93...98% hatásfokú.

A csúszás miatt a hajtás valóságos áttétele is más lesz, ezt figyelembe véve:

$$i = \frac{d_2}{d_1} (1 - s).$$

A megbízható nyomatéktávítel érdekében a szíjhurkot meg kell feszíteni. A feszítőket azonban a mozgással ébredő centrifugális erő enyhíti, a tengelyekre ható erőket csökkenti. A szíjágerők összege vektoriálisan:

$$F_h = F_{t_1} - F_{t_e} + F_{t_2} - F_{t_e}.$$

Nem nagy áttételnél a szíjágak közel párhuzamosak és az algebrai összegzés is megfelelő, vagyis:

$$F_h = F_{t_1} - F_{t_e} + F_{t_2} - F_{t_e} = \frac{\varepsilon}{\varepsilon - 1} F_k + \frac{1}{\varepsilon - 1} F_h = \frac{\varepsilon + 1}{\varepsilon - 1} F_k.$$

Ez az üzem közben ható tengelyhúzás. Álló helyzetben, vagy lassú forgásnál nem érvényesül a centrifugális erő lazító hatása, így a tengelyek terhelése nagyobb.

A vonóelemes hajtások minősítésére meg szokták határozni, hogy egy adott kerületi erő átviteléhez mekkora tengelyhúzást kell kifejteni. Ezt az áthúzási fokkal, vagyis a kerületi- és a tengelyhúzás hányadosával lehet kifejezni:

$$\varphi = \frac{F_k}{F_h} = \frac{\varepsilon - 1}{\varepsilon + 1}.$$

A tengelyeket és a csapágyakat a biztonság kedvéért $F_h = 3F_k$ értékre kell méretezni.
5.4.8. Ékszíjhajtások
Az erőzáró hajtások nyomatékátvitelekor döntő szerepet játszik a szijtársca és a szij közötti súrlódás. Megfelelő anyag kiválasztásával a súrlódási tényező, a tárcsa és a szij érintkezésének geometriájával pedig a felületre merőleges erőt tudjuk befolyásolni. Az utóbbinál az ékhornyos tárcsa és ékszij alkalmazása a legelterjedtebb. Az ékszijtársca erőhatásai az 5.11. ábra szerint:

5.11. ábra: Ékhatás

\[\Delta F_n = \frac{\Delta F}{2 \sin \alpha/2} \quad \text{és} \quad \Delta F_k = 2 \cdot \mu \cdot \Delta F_n = \frac{\mu}{\sin \alpha/2} \cdot \Delta F = \mu' \cdot \Delta F. \]

A súrlódási tényező látszólag \(\mu' = \frac{\mu}{\sin \alpha/2} \) értékre növekedik. A szabványos ékszijtársásknál az \(\alpha=34\ldots38^\circ \), így a \(\mu' \approx 3 \mu \).

5.4.9. Az ékszij kiválasztása

A hajtás elemeit általában katalógus termékekből választjuk ki, esetleg a szijtársák egyedi gyártásra kerülnek. Az ékszíjhajtás méretezéséhez ismert a hajtó és hajtott egység, a napi munkaórák száma, az átvihető teljesítmény, a bemenő és rendszerint a kimenő fordulatszám.

A hajtás átvihető teljesítménye függ a hajtás rendszer elemeitől, és a munka körülményeitől ezt egy szerviz tényezővel fejezzük ki (jele: \(c_2 \)).
Szerviz Tényező

5. HAJTÁSTECHNIKA ÉS HAJTÁSOK

A hajtót munkagép típusa

<table>
<thead>
<tr>
<th>könnyű üzem</th>
<th>közepesen nehéz üzem</th>
<th>nehéz üzem</th>
<th>igen nehéz üzem</th>
</tr>
</thead>
<tbody>
<tr>
<td>híztartási gépek, centrifugál szívattyú és kompresszor, könnyű üzemű szállítósállag, ventilátorok és szívattyúk 7,5 kW-ig</td>
<td>lenne vágó, sajtóló, nehéz üzemű szállítóolaj, és szállítósállag, oszcilláló rác, generátor, rác gép, automata tészt gyúrő, datű, szerszámgép (csizma, kőésből), mosdó gép, nyomtatási gép, ventilátorok és szívattyúk 7,5 kW felett</td>
<td>öltőréti, szemcséző, dugattyús kompresszor, nehéz üzemű szállító berendezések (szállítóesná, lencses szállítószállag, kanálos cseregyep), felvész, brízik szijoló, textil gép, papírkészítő gép, dugattyús szívattyú, kőrösszigyűjtő, alternátív fűrész, kalapács talajtartók</td>
<td>nehéz üzemű erőmű, költő gép, mángetőgép, mixér, csőrö, daru, markológép</td>
</tr>
</tbody>
</table>

Normál nyomatéka egy- és híromfázisú aszinkron motorok (2-szeres névleges nyomatékig), pl. színzöld és egyfázisú motor segítségével indítással, híromfázisú aszinkron motor teljes feszültségi, csillag-delta vagy csillagfőrész indítással, mellékáramú DC motor, behajlító motorok és turbínák 600 min⁻¹ fordulatszám felett

Nagy nyomatéka egy- és híromfázisú aszinkron motorok (2-szeres névleges nyomaték felett), normál tekercselt és kompand tekercselésű DC motor, behajlító motorok és turbínák 600 min⁻¹ fordulatszám alatt

<table>
<thead>
<tr>
<th>napi munkaórák száma</th>
<th>napi munkaórák száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10</td>
<td>≤10</td>
</tr>
<tr>
<td>10<16</td>
<td>10<16</td>
</tr>
<tr>
<td>16<</td>
<td>16<</td>
</tr>
</tbody>
</table>

Az áttétel meghatározható a be és kimenő fordulatszámok hányadosaként.

A tárcsaátmérők méretét a rendelkezésre álló hely, ill. a szijélettartam határozza meg, ugyanis kedvezőbb az őlettartam, ha a kerületi sebesség 18...22 m/s közé esik (képlet a 120. oldalon, az átmérők a jellemző átmérők legyenek). Figyelembe kell még venni, hogy a kistárcsa átmérőjének szabvány szerinti alsó határa van, a nagy hajlító igénybevétel miatt. Természetesen az áttétel is meghatározó a méreteken. Mivel szabványos értékekkel van szó, az áttételt csak egy határon belül lehet pontosan kihozni.

Az ajánlott tengelytáv: \(0.7 \cdot (d_{p1} + d_{p2}) \leq a \leq 2 \cdot (d_{p1} + d_{p2}) \). A tengelytávból és a tárcsaátmé-rőkbal következik a szij hossza (képlet a 5.4.4 bekezdésben, L helyett itt helyénvalóbb az Lp), ami megint csak kötött érték lehet, így a tengelytáv kicsit változik miatta, a közelítően pontos érték a 5.4.4 bekezdésben levő képlettel számítható. A szijhossz alapján egy újabb átvihető nyomatékot módosító ténylegyővel kell számolni (jele: \(c_j \)), ami a katalógusban található.

© Szalai Péter, SZE

www.tankonyvtar.hu
Meghatározandó még a kis tárcsán az átfogási szög, ami egy újabb átvihető nyomatékot módosító tényezőt ad (jele: \(c_1 \)).

A szíj feszítése (x) és felszereléséhez (y) szükséges távolságok az átfogási szögből és a szíjhosszból adódnak:

\[
x = \frac{0.01 \cdot L_p}{\sin \beta / 2},
\]

\[
y = \frac{0.005 \cdot L_p + \pi \cdot h \cdot \frac{\beta}{360}}{\sin \beta / 2}.
\]

Hogy kedvező élettartamot kapjunk, a szíjfrekvencia értékeit cél szerű ajánlott határok között betartani: 15...20 1/s, ha a szíjszélesség \(l_0 \leq 10 \) mm, ill. 20...30 1/s, ha a szíjszélesség \(l_0 \leq 13 \) mm. Az értékek normál ékszíjakra vonatkoznak. A szíjfrekvencia arányos a tárcsák \(z \) számával, a heveder \(v \) sebességével és fordítottan arányos az \(L_p \) heveder hosszal:

\[f = \frac{v \cdot z}{L_p}. \]

Ha az ékszíjhajtással átviendő teljesítmény \(P \), az egy ékszíjjal átvihető névleges teljesítmény \(P_0 \), akkor a szükséges szíjhurok szám:

\[z = \frac{c_2 \cdot P}{P_0 \cdot c_1 \cdot c_3}, \]

a kapott értéket egész számra kell felkerekíteni. Minden egyes szíjprofil típushoz saját diagram tartozik, ami az átvihető teljesítményt mutatja. A Contitech forgalmazásában levő Conti Advance FO®-Z fogazott ékszíjhoz az alábbi diagram tartozik, leolvasható az adott fordulatszámhoz tartozó szerviz tényezővel módosított teljesítményérték, a négy profil nagyság, ill. a kis szíjtárcsa átmérő szerint.
5. ábra: Szijteljesítmény – hajtó fordulatszám függvények, tárcsaátmérő szerint

Az effektív szijhúzási erőt a következően számolhatjuk:

\[F_{n_1} = \frac{P}{v_1} \]

A tengelyterhelés is kiszámítható:

\[F_h = \left(k_1 \cdot F_{n_1} + 2 \cdot z \cdot k_2 \cdot v^2 \right) \cdot \sin \frac{\beta}{2} \]

ahol \(k_1 \) a szij feszességi és \(k_2 \) a centrifugális erő tényező, mindkettőt katalógus rögzíti.

A felszerelés és feszítés helyességére egy ellenőrző erő határozandó meg, ami a szijágnak kellő elmozdulását eredményezi.

5.4.10. Normál, és keskeny ékszíj

5.13. ábra: Normál ékszíj keresztmetszet

A keskeny ékszíj a normáltól abban tér el, hogy itt $h_0/l_0=1:1,23$, míg a másiknál $h_0/l_0=1:1,16$. Az ide tartozó szabvány a DIN7753/ISO4184. A keresztmetszeteket jelölése SPZ, SPA, SPB, SPC. A megengedhető síjsebesség 40 m/s, a síjfrekvencia pedig 100 s⁻¹. A normál ékszíjhoz képest nagyobb az egységesi síjkeresztmetszet leti teljesítmény. A szijtárcsa horony méreteit a DIN2211/ISO4183 tartalmazza. Parkfenntartó, és kerti gépeken a szélsőséges körhülyenekre kifejlesztett változatai elterjedtek.

5.4.11. Kettős ékszíj

5.4.12. Fogazott ékszíj

5.15. ábra: Fogazott ékszij szerkezete

5.4.13. Többsoros ékszij

Amennyiben párhuzamosan kell használni legfeljebb öt ékszíjhurkot, akkor a felső oldalon össze lehet kapcsolni egy rugalmas szalaggal (pl. kloroprén). A kialakítással csökken a szíjak elcsavarodása, és a lengési jelenségek. A külső szalag bizonyos védelmet biztosít a külső szennyeződésekkel szemben, de a szíjak öntisztító hatása nem jelentkezik, beszorulhat az idegen anyag, tehát a hajtás burkolatáról gondoskodni kell. (Bando Power Ace Cog Combo). A mezőgazdasági járművek közt a kombájnokban gyakran alkalmazzák.

5.16. ábra: Többsoros ékszij szerkezete

5.4.14. Nagy sebességű ékszij

A szijtípus az igen nagy sebességű működésre fejlesztették ki (5.17. ábra: Gates Polyflex). A profílszöge 60°, a legnagyobb profil szélessége is csak 11 mm, a hátoldalán merévítő bordázattal ellátott. Kapható többsoros kivitelben is. A maximális fordulatszám 12000 1/min.

5.17. ábra: Nagy sebességű ékszij szerkezete

5.4.15. Széles ékszij

Másik neve a variátor ékszij, ugyanis az alkalmazási területe a fokozat nélkül állítható hajtá- sok, pl. motorkerékpárok automata sebességváltója. Az 5.18. ábra a Conti Scooter XT típust

![Diagram]

5.18. ábra: Széles ékszíj szerkezete

5.4.16. Ékbordás ékszíj

![Diagram]

5.19. ábra: Ékbordás ékszíj szerkezete

5.4.17. Ékszíj tárcsák kialakításai

Az ékszíjtárcsa anyaga legtöbb esetben öntött vas. Készülhet azonban más anyagból is, pl. acélból, színesfémdből, alumínium ötvözetből, esetleg műanyagból. Az 5.20. ábra a) képe szemlélteti a szabványos normál ékszíj horonnyal kialakított tárcsát az ékszíjjal együtt, és pár kereskedelemből vett minta tárcsaformát (SKF). Minden fajta ékszíj esetén a szabvány rögzíti a horony kialakítását, méreteit, a tárcsához tartozó többi méret ajánlás, vagy szabad tervezés alapján állapítható meg. Gyártástechnológia szerint készülhet forgácsolással, öntéssel, forrasztással, hegesztéssel 5.20. ábra b) képei, valamint egy OPEL konstrukciót mutat az 5.20. ábra c) képe.
5. Alakrázó vonóelemes hajtások

Az ebben a csoportba tartozó hajtások esetében, a csak húzóterhelés kifejtésére alkalmas vonóelem és a hajtó vagy hajtott tárcsa, ill. kerék között kényszerkapcsolat van. Ide tartozik a fogasszij- és a láncjátékos.

5.5.1. Fogasszíjhajtás tulajdonságai

Előnyök:
- csúszásmentes, rugalmas, hajlékony kényszerkapcsolat,
- nagy szilárdság, igen kis nyúlás,
- kis méretű előfeszítés, kis csapágyterhelés,
- nagy hatásfok 98...99%
- nagy áttétel, kis helyszükséglet
- kenésnélküli, egyszerű karbantartás, kopásállóság,
- dinamikus hatásokat jól tűri.

© Szalai Péter, SZE www.tankonyvtar.hu
Hátrányok:
- az ékszíjhajtásnál erősebb zaj,
- a lánchajtással szemben kisebb hőmérséklet tartományban használható.

5.5.2. A fogasszijak anyagai

A kedvező tulajdonságokat a fogasszij összetett szerkezetből nyeri. A fő húzóterhelést felvevő rész itt is a beágyazott sodrott szálak, és anyagaiban is szinte megegyezik az előzőekben tárgyalt ékszijakéval, kivéve hogy ezeknél előfordul a sodrott acélhuzal is.

5.5.3. Alkalmazási területei, elrendezések

A hajtás elterjedtsége széles, megjelenik pl. a finommechanikában, háztartási gépekben, közúti járművekben (a személyautók vezérműtengely hajtása), építőgépekben, görgőjáratokban, papírgyártó gépekben is. Elrendezési példákat mutat az 5.21. ábra, az e) képen egy V6 – 24 szelepes motor szelepvezérlés hajtása van.

![Diagram](image)

5.21. ábra: Fogasszijhajtás elrendezések

5.5.4. A fogasszjí kiválasztása

Az alábbi ábrán egy nyitott elrendezésű fogasszijhajtás látható a tengelytáv (a), az átfogási szög (\(\beta\)), a jellemző átmérő (\(d_p\)) és a tárcsa külső átmérője jelölésével. A jellemző átmérő a tárcsán kívül van!

![Diagram](image)

5.22. ábra: Fogasszij hajtás jelölések értelmezése
A jellemző áttétel a fordulatszámokkal kifejezve:

\[i = \frac{n_1}{n_2} \]

A fogkapcsolási szám tényező \((c_1)\) a kapcsolódó fogak számától \((z_β)\) függ, ami a kis fogasszijtárcsa fogszáma \((z_1)\), és az átfogási szög \((β)\) adja:

\[z_β = z_1 \cdot \frac{β[^\circ]}{360[^\circ]} \cdot \]

\[\begin{align*}
 z_β &= 3, \quad c_1 = 0,4 \\
 z_β &= 4, \quad c_1 = 0,6 \\
 z_β &= 5, \quad c_1 = 0,8 \\
 z_β &\geq 6, \quad c_1 = 1
\end{align*} \]

Az összegzett üzemtényező \((c_0)\), a terhelés tényező \((c_2)\), a gyorsítási tényező \((c_3)\) és a kifáradási tényező \((c_4)\) összege:

\[c_0 = c_2 + c_3 + c_4 \]

A gyorsítási tényező \((c_3)\), és a kifáradási tényező \((c_4)\):

<table>
<thead>
<tr>
<th>(\frac{1}{i})</th>
<th>(c_3)</th>
<th>napi üzemórák száma, és jellege</th>
<th>(c_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00-1,24</td>
<td>0</td>
<td>10-16 óra</td>
<td>0,2</td>
</tr>
<tr>
<td>1,25-1,74</td>
<td>0,1</td>
<td>16 óra felett</td>
<td>0,4</td>
</tr>
<tr>
<td>1,75-2,49</td>
<td>0,2</td>
<td>járulékos szíjhurok, pl. szijfe-</td>
<td>0,2</td>
</tr>
<tr>
<td>2,5-3,49</td>
<td>0,3</td>
<td>szítő görgő</td>
<td></td>
</tr>
<tr>
<td>3,50-</td>
<td>0,4</td>
<td>időszakos működés</td>
<td>-</td>
</tr>
</tbody>
</table>

A kiválasztás során számolni kell a szíj hosszúságától függő tényezővel \((c_5)\) is, ami 0,8 és 1,2 közötti szám.

A szijtípus és típus nagyság kiválasztása az összegzett üzemtényezővel módosított átvendi teljesítmény és a kis tárcsa fordulatszámára alapján a katalógus ábrák alapján lehetséges. Az 5.23. ábrán egy kivonat látható a Conti Synchrobelt fogasszijhoz tartozó diagramból.
5.23. ábra: Trapéz fogalakú fogasszíj teljesítmény – fordulatszám diagramja

A jellemző átmérő (d_p) számítása, a fogszám (z), és az osztás (t) alapján:

$$d_p = \frac{z \cdot t}{\pi}.$$

Az átfogási szög a következő módon számolandó:

$$\beta = 2 \cdot \arccos \left(\frac{t \cdot (z_2 - z_1)}{2 \cdot \pi \cdot a} \right).$$

A tengelytáv hozzávetőleges meghatározása szabad tervezői feladat, ajánlott az alábbi képlet-tel megállapítható határok betartása:

$$0,2 \cdot (d_{p_2} + d_{p_1}) \leq a \leq 0,7 \cdot (d_{p_2} + d_{p_1}).$$

A pontos értéket pedig a választott szabványos szíjhosszúság szabja meg. Közelítő képletel:

$$a \approx \frac{1}{4} \left[L_p - \frac{t}{2} \cdot (z_2 + z_1) + \sqrt{\left(L_p - \frac{t}{2} \cdot (z_2 + z_1) \right)^2 - 2 \cdot \left(\frac{t}{\pi} \cdot (z_2 - z_1) \right)^2} \right].$$

Az irányadó szíjhossz, amit felfele, egy szabványos számra kerekítve kapjuk a véglegeset:

$$L_p = 2 \cdot a \cdot \sin \frac{\beta}{2} + \frac{t}{2} \left[d_{p_2} + d_{p_1} + \left(1 - \frac{\beta}{180} \right) \cdot (d_{p_2} - d_{p_1}) \right].$$

A szíjsebesség az osztás és a fogszámmal kifejezve:
5. HAJTÁSTECHNIKA ÉS HAJTÁSOK

\[v = t \cdot z_1 \cdot n_1 \]

Szükségesség meghatározásához az alábbi egyenlőségnek kell teljesülnie:

\[P \cdot c_0 \leq P_0 \cdot c_1 \cdot c_4 \]

ahol \(P_0 \) az adott típusú, és szélességű fogasszijjal átvihető teljesítmény, melynek pontos értéke katalógus adat.

A szükséges tengelyre ható előfeszítő erő:

\[F_h = \frac{P \cdot \sin \frac{\beta}{2}}{t \cdot z_1 \cdot n_1} \]

5.5.5. A trapéz fogalakú fogasszij

5.24. ábra: Trapéz fogalakú fogasszij szerkezete

A kétoldali fogazású kivitel (jele: T-DL) több tárcsa hajtására alkalmas, ellentétes és azonos forgásértelemmel is. A trapéz fogalakot több fejlesztés is átdolgozta. Így jött létre az AT, ATP, K forma.

5.25. ábra: különböző fogalakok

A fogasszijak felhasználási területéhez tartozik az ipari hajtástechnikán, és autóiparban is. A papír-, fa-, kerámia-, üveg-, élelizszeripar, vagy a címkek és csomagoló gépek a fogasszijat, hatóoldalán bevonnáll ellátott módon használják. Így a PU, PVC, PAR, PAZ, Viton, Teflon, szilikon, bőr és a sokféle természetes, és szintetikus gumi bevontakokkal, kellő tapadás, kopás-, sav-, hőállóság, antisztatikusság megoldható.
5.5.6. **HTD fogasszij**

Előnyös tulajdonsága, hogy a terhelés kedvezőbben oszlik el benne, mint a trapéz fogalak esetében (5.26. ábra). Neve az angol High Torque Drive rövidítése, utalva a nagy teljesítményátvívó képességére (~250 kW).

![Diagram: HTD vs trapéz fogalak](image1)

5.26. ábra: A HTD fogalak előnyesebb izokromata képet ad a trapézzal szemben

Az ISO 13050 szabvány alapján 3M, 5M, 8M, 14M jelölésű HTD szíjakat különböztetünk meg, ahol a szám a milliméterben kifejezett osztásra utal. A trapézprofilúval megegyezően itt is van borított, és anélkül, amelyek szerkezetükben és anyagaikban is hasonlóak. A borított kivitelben (poliamid szövet) a nagy alacsony fordulatszám és nagy nyomatékra kifejlesztettek esetén bázisanyagként az NBR, és a HNBR, a terhelést hordó elemeknek az üvegszál, és aramidszál használatos, a magas fordulatszám, és nagy teljesítménynél pedig a polikloroprén és az üvegszál.

5.5.7. **STS/STD és CTD fogasszijak**

A HTD fogalak továbbfejlesztésével született meg az STD, CTD (Contitech AG.), STS (Bando co.) jelzésű fogasszijak, amelyek még tökéletesebben veszik fel a terhelést, a CTD esetében az átvihető teljesítmény ~1000 kW. Az STS fogalakra vonatkozó szabvány az ANSI/RMA IP-24, profil nagyság választéka S2M, S3M, S4.5M, S5M, S8M, S14M. Az CTD C8M és C14M kivitelben készül.

![Diagram: HTD, STD/STS, CTD fogasszijak](image2)

5.27. ábra: HTD, STD/STS, CTD fogasszijak
5.5.8. Fogasszítárcsák kialakítása

A fogasszítárcsák kialakításánál a fogazatot szabvány alapján, a további méreteket szabad tervezéssel, ill. a kereskedelemben kapható választék szerint alakítsuk ki. Az ékszítárcsákánál ajánlott kivitelek ide is érvényesek (5.4.17 fejezet). A hajtás tervezés során ügyelni kell, hogy a fogasszíjhuroknak legalább az egyik tárcsa vagy görgője peremes legyen. Az 5.28. ábra a) és b) képén peremes szíjtárcsa látható, a c) képen pedig peremes feszítő görgő van beépítve a szelepvezérlés hajtásába. A d) kép a lehetséges variációkat mutatja.

5.28. ábra: Peremes fogasszítárcsák a), b), peremes feszítőgörgő c), lehetséges peremelhelyezések d)

Fontos továbbá a tárcsák párhuzamossága, amelyben az eltérés legfeljebb a tengelytáv 0,5%-a lehet, a tengelyek egymáshoz viszonyított szöghiba pedig 0,25°/m a tengelytávra vetítve.

5.5.9. Lánchajtások általában

5.5.10. A lánchajtások előnyei és hátrányai

Előnyök:
- alakzáró, csúszásmentes erőátvitel,
- kis előfeszítés, kis tengely- és csapágyterhelés,
- szennyeződésre, nedvességre, hőre kevésbé érzékeny,
- az olajkenés a csapok, görgők között csillapított hajtást tesz lehetővé,
- kisebb beépítési méretek, kisebb átfogási szög,
- nagy tengelytávra is jó, egyszerre több tengely is hajtható,
- jó a hatásfok.

© Szalai Péter, SZE www.tankonyvtar.hu
Hátrányok:
- nem rugalmas, merev erőátvitel,
- párhuzamos tengelyek, lánckerek azonos síkba szerelendők,
- drágább, mint a szíjhajtás,
- a polygonhatás miatt a hajtott tengely szögsebessége, így az áttétel is, ingadozik
- adott üzemi körülmények között hossz- és keresztirányú lengések keletkezhetnek,
- karbantartásuk igényesebb,
- zajos.
- áttétel i<10.

5.5.11. A lánchajtások elrendezése

A lánchajtás leggyakoribb elrendezése függőleges síkban vízszintes tengelyeken. Optimális elrendezés, amikor a láncágak 30°...60°-ban hajlanak a vízszinteshez, és a felső a terhelt ág. Ilyenkor általában külön láncfeszítő szerkezet nem szükséges. Az 5.29. ábra a lánchajtások elrendezését mutatja.

5.29. ábra: Lánchajtás elrendezések

Függőleges és közel függőleges láncágak esetén célszerű feszítőszerkezeteket alkalmazni. Ha nagy tengelytávot kell áthidalni, támasztóvezetékek szükségesek.

Az 5.30. ábra különféle hajtáselrendezéseket mutat be: a) többtárcsás, a b) feszítőkeresek, a c) rúgós és súlyos feszítőkeresek, a d) támasztókeresek, az e) Optichain-CC feszítőszerkezettel felszerelt és az f) támasztó- és feszítővezetékes lánchajtás elrendezést ábrázol.
5. HAJTÁSTECHNIKA ÉS HAJTÁSOK

5.30. ábra: Láncfeszítő megoldások

5.5.12. A lánchajtás kinematikája

A lánchajtás közepes áttételét a fogszámok aránya adja. A tényleges áttétel e körül ingadozik, ezt poligonhatásnak nevezzük. Ez az ingadozás a fordulatszámmal és a fogfrekvenciával, vagyis a fogszám és a fordulatszám szorzatával arányos. A hajtókerék egyenletes forgómozgása ellenére a láncág egyenlőtlenül mozog, a lánccsukló középpontjának sugara ugyanis változik.

Az egyenletlenség (poligonhatás) annál nagyobb, minél kisebb a fogszám és minél nagyobb az osztás értéke.

A lánc sebessége egy képzelt hatfogú lánckeréknél az 5.31. ábra jelölései szerint:

\[v_\phi = \frac{\omega \cdot P \cdot \cos \varphi}{2 \cdot \sin \alpha}. \]

A láncebesség maximális és minimális értékei:

\[v_{\text{max}} = \frac{\omega \cdot P}{2 \cdot \sin \alpha}, \quad \text{ill.} \quad v_{\text{min}} = \frac{\omega \cdot P}{2 \cdot \tan \alpha}. \]

Poligonhatásból eredő sebességengadozás a lánchajtásnál \(\Delta v_{\text{max}} = 4.5 \cdot v / 100 \).
5.5.13. Erőhatások a lánchajtásokban

A nyomatékok átvívő láncot lényegében háromféle erőhatás terheli, a hasznos terhelést jellemző lánchúzóerő (\(F_h \)), a saját tömegből adódó erő (\(F_g \)) és a forgó mozgásból keletkező centrifugális tőmeerő (\(F_c \)). Ezekben a húzóerőkön kívül fellépnek a dinamikus hatásokból eredő erők, ezeket tényezőkkel vesszük figyelembe.

A hasznos lánchúzóerő a poligonhatás miatt bizonyos határon beül ingadozik, de közelítően az alábbi képlettel számíthatjuk:

\[
F_h = \frac{2T_1}{d_1} = \frac{2T_2}{d_2}.
\]

A saját tömegből adódó komponens a \(q \) [N/m] láncsúly, az \(a \) [m] tengelytáv és az \(f \) [m] belógással kifejezve (vízszintes láncot feltételezve):

\[
F_g = \sqrt{\frac{1}{8} q \cdot a^2 \cdot f + \left(\frac{1}{2} q \cdot a\right)^2}.
\]
A centrifugális erő, és annak láncirányú komponense (F_c):

$$F_c = \frac{q \cdot p \cdot v_k^2}{g \cdot r}, \quad F_c = \frac{F_c}{2 \cdot \sin \alpha} = \frac{q \cdot p \cdot v_k^2}{2 \cdot \sin \alpha \cdot g \cdot r} = \frac{q \cdot v_k^2}{g},$$

ahol g a nehézségi gyorsulás, r a körívpálya sugara és $p = 2 \cdot r \cdot \sin \alpha$ az osztás. Tehát az összevont terhelőerő:

$$F_\theta = F_h + F_g + F_c'. $$

A gyártói katalógus alapján, a járulékos terhelést, az üzemek körülményekből (1…2,1), a hajtó lánckerék fogszámából (0,64…2,5) és a tengelytávából adódó (0,85…1,3) tényezőkkel fejezhetjük ki. A kapott módosított összevont erőt a katalógusban található szakító erővel kell összeszevetni, ami típus és méret alapján rendszerezett táblázatban van, és meghatározza a biztonsági tányezőt. Görgős lánc esetén megadják a megengedett felületi nyomást is, amivel szintén lehet biztonsági tányező számolni, összehasonlítva a számolt felületi nyomással, ami az összevont erő, és a hüvely és a görgő közötti vetületfelület hányadosa.

$$p = \frac{F_\theta}{A} \leq p_{meg}. $$

A lánc kiválasztását másik módja a teljesítménydiagram használata. Az egy kisérleti eredményekre alapozott diagram, tehát meghatározott körülményekre vonatkozik, pl. 15000 üzemórához, 19 fogú hajtó lánckerék, két párhuzamos, vízszintesen egy síkba eső tengelyek, egy-soros lánc, -5…70°C, nyugodt járású üzem és tiszta kifogástalan kenés.

5.32. ábra: Lánc teljesítmény görbék (DIN 8187 alapján)

5.5.14. A láncjáték tervezéséhez javasolt üzemi jellemzők

Ajánlott tengelytáv: $a = (30...40) p$, megengedett tengelytáv: $20 p < a < 80 p$.

Megengedett lánccsinél állandó tengelytávnál:
\[\varepsilon = \frac{\Delta l}{l} = (0,6...1,5)\%, \text{ utánfeszítéssel } \varepsilon \approx 3\%. \]

Javasolt legkisebb fogsám \(z_{j}=17...25 \), lehetőség szerint páratlan.

Legnagyobb áttétel: \(p \leq 9,525 \text{ mm osztásnál } i_{\text{max}}=8, p > 9,525 \text{ mm osztásnál } i_{\text{max}}=6. \)

A lánchajtás hatásfoka \(\eta \leq 98,5\% \).

5.5.15. Lánctípusok, alkalmazásuk

Az 5.33. ábra a főbb lánc típusokat mutatja: az a) Gall-lánc, a b) Flyer-lánc teheremelésre, vontatásra szolgál.

![Lánctípusok](image_url)

5.33. ábra: a) Gall-, b) Flyer-, c) hüvelyes, d) görgős, e) Rotary, f) csapszeg, g) szállító lánc

Durva üzemű hajtásokra való a c) hüvelyes lánc. A leggyakrabban használt csuklós lánc típus a görgős lánc (5.33. ábra d) kép).

A görgős láncok (ISO 606) belső és külső tagokból vannak összeépítve. A hüvelyes láncokhoz hasonló felépítésűek, de a hüvelyre görgőt is szerelnek, így a lánc és a lánckerék foga között nincs csúszósúrlódás. A görgő és a hüvel közötti olajpárra lőkéscsillapító hatása csökkenti a hajtás zajosságát. Egy és többsoros kivitelben egyaránt használható.

A Rotary lánc (5.33. ábra e) kép) a kedvezőtlen üzemi viszonyok között dolgozó munkagépek nehéz hajtóműveiben alkalmazott lánc típus (földmunka-, olajfúrógépek). Nagy terhelés hatására fokozottabb nyúlásra képes a többi típusnál szemben.

A csapszeglánc (5.33. ábra f) kép) süllyesztékben kovácsolt, vagy temperöntvényből készült tagokból áll. Alkalmazása a nehézipari munkagépek lánctalpai.

A szállítóláncok (5.33. ábra g) kép) hevedereinek kialakításával teszik alkalmassá különböző anyagok, termékek szállítására vagy tárolóelemek hozzákapcsolására.
A fogasláncok (5.34. ábra), különösen nagyobb sebességek esetén, teljesítmény átvitelre, a görgős lánc mellett, leginkább használt lánctípus. A fogaslánc kétfogú lemezekből épül fel, a fogaknak adott ferde egyenes oldaluk van, és ezek támaszkodnak fel a lánckerék fogoldalára. A lánc oldalirányú elcsúszását vezetőhevederek akadályozzák meg, amelyek egymás után a lánc közepén (5.34. ábra a) kép), vagy a lánc két oldalán kívül (5.34. ábra b) kép) helyezkednek el. Üzeme mérsékelt zajú. Szabvány: DIN8190. A hevederek összekapcsolására többféle kialakítást fejlesztettek ki, amire négy példát mutat az 5.34. ábra. A c) képen a csapos, a d), e), f) képen pedig a különböző csappáros kapcsolódás van (Bosch – HPC, HDL, KH).

5.34. ábra: Fogaslánc középen a), kívül elhelyezett vezetőhevederekkel b), csapos c), csappáros összekapcsolás d), e), f)

5.5.16. Lánckerék típusok
A különböző lánctípusokhoz megfelelő fogalakú lánckerékeket kapcsolunk. A fogak profiljának biztosítani kell a lánc tagok akadálymentes, nyugodt bekapcsolódását, kifutását és a nyomaték biztos átvitelét.

Az 5.35. ábra a) képe szemlélteti a hüvelyes és görgős lánc lánckerékének fogprofilját. A lánchajtás áttétele:

\[i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{d_2}{d_1}, \]

ahol: \(n_1, n_2 \) a hajtó és hajtott lánckerék fordulatszáma,
\(z_1, z_2 \) a hajtó és hajtott lánckerék fogszáma,
\(d_1, d_2 \) a hajtó és hajtott lánckerék osztókori átmérője.
Az osztásszög és az osztókör átmérője:

\[
\alpha = \frac{180^\circ}{z}, \text{ ill. } d = \frac{p}{\sin \alpha} = \frac{p}{\sin \left(\frac{180^\circ}{z}\right)}.
\]

A lábkörátmérő és a fejkörátmérő a következőképpen számítható ki:

\[
d_j = d - d_i, \text{ ill. } d_a = d \cdot \cos \alpha + 2 \cdot k.
\]

5.35. ábra: Görgőslánc a), fogaslánc lánckerék fogkialakítása b), fogaslánc lánckerék középen c), külső vezetés esetén d)

A foghegesedés félszöge \(\gamma = 15^\circ \pm 2^\circ\), ha a láncsebesség \(v \leq 12 \text{ m/s}\), és \(\gamma = 19^\circ \pm 3^\circ\), ha a láncsebesség \(v > 8 \text{ m/s}\).

Az 5.35. ábra b) képe szemlélteti a fogaslánc lánckerékét fogprofilját, és a hozzá illeszkedő láncelemez, a belső, vagy külső vezetésű módhoz tartozó lánckerék kialakítást pedig a c) és d) kép. Az osztókörátmérő, és az osztásszög azonosan számítandó mint a görgős lánc esetén,
a fejkörátmérő: \(d_f = d \), a lábkörátmérő pedig \(d_f = d - 2h \) (ahol \(h \) – fogmagasság érték).
A fogároknyilásszög \(\beta = 60^\circ - 360^\circ / z = 60^\circ - 2\alpha \), a profilszög \(\gamma = 30^\circ - 2\alpha \).

![Diagram](image.png)

5.36. ábra: Lánckerék görgős lánhöz a), b), c), hegesztett kivitel d), háromsoros lánckerék e), fogaslánhöz lánckerék f), egyszerű lánckerék kialakítás heryőcsavaros- g), kúpos szorítóhüvelyes rögzítéssel h)

5.6. Fokozat nélkül állítható áttételű mechanikus hajtások, variátorok

A járműveink, egyes gyártási eljárások és más munkamenetek megkövetelik azt, hogy fokozat nélkül lehessen a műveleti sebességet változtatni. Elektronikus, hidraulikus vagy mechanikus módon ez a feladat igen jól megoldható, de egy szinergikus a több terület hasznos tulajdonságait alkalmazó rendszer a leghatásosabb. A mechanikus hajtóművek kizárólagosan erőzáró kapcsolattal működnek. Villamos módon a fordulszám-változtatást meg lehet oldani, de a
teljesítmény állandó értéken tartására ez a rendszer nem alkalmas. Erre a célra, a hidraulikus és a mechanikus hajtóművek jönnek számításba.

Minden mechanikus, fokozatmentes fordulatszám-változtatás, vagyis az áttétel fokozatmentes változtatásának alapelve az, hogy az a sugár, amelyen az átvendető kerületi erő működik, változik. Az áttétel szokásos tartást értékiállását általában 1/4...1/10.

E hajtóműcsoport fejlesztése során lényegében kétféle mechanikus elven működő hajtási típus alakult ki, a dörzskerekes hajtómű, és a vonóelemes hajtómű.

A fordulatszámot kétféle szempontból kiindulva lehet változtatni. A fordulatszám-változtatás állandó teljesítmény esetén \(P = \text{áll.} \), a nyomaték \(T = \sqrt{P / (2 \cdot \pi \cdot n)} \), tehát a fordulatszám függvényében a nyomatéka hiervolitikusan változik. A fordulatszám-változtatás állandó nyomaték esetén a fordulatszámól a teljesítmény lineárisan függ.

A bemenő fordulatszámhoz képest a kimenő fordulatszám variálható, ezért ezeket a hajtóműveket variátoroknak is nevezik. A variátorok fokozat nélküli állítását, vagyis a fordulatszám-változtatást lehet manuálisan végezni, főként akkor, ha a hajtott gép működési körülményei ritkán változnak. Ha az üzemi követelmények folyamatosan vagy gyakran változnak, akkor célszerű az automatikus állítás lehetőség kialakítása. Motoros járművekben, pl. mopedekben, úttisztító gépekben, robogókban az automatikus szabályozású, fokozat nélküli hajtások nagyon előfordulnak, és ezeknek a tengelykapcsoló, sebességváltó kezelése tehát elmarad, és a közúti járművekben is egy fő fejlesztési terület. A gépipar legkülönbözőbb ágaiban is gyakran lehet a variátorokkal találkozni.

5.6.1. Fokozat nélkül állítható áttétel a dörzskerekes hajóművek

A dörzskerekes variátorok tervezése és gyártása nagy körületkintést és szakértelmet igényel, mert nagy szerepet játszik a súrlódás, a kopás, a hőfejlődés. Az alapján egy teljesítmény átvitel két egyenlő szoruló dörzskerék közt valósul meg. Az áttétel változtatást az érintkezési pont, futópályára merőleges eltolásával lehet elérni (lásd: 5.37. ábra a)...f) képei). Kis nyomatékok átvitelére a hajtásokat mutat be az alábbi 5.37. ábra g), h) és i) képei.

Az elméletileg egy pontban, vagy vonal mentén érintkező forgástestekben a felület terhelése nagy, a méretezés során a Hertz-feszültségek az irányadók. Ugyanakkor a valós szerkezetben jelentős csúsztások is fellépnek. Az előbbi az összeszorító erőnek szab határt, és a felület kifáradását okozza, az utóbbi miatt pedig komoly hőfejlődés van, tehát gondoskodni kell a hőelvezetésről.

A száraz üzemű szerkezetek dörrsz anyagpárral műanyag vagy gumiacélhal. Kevésbé pontos megmunkálás is elegendő, viszont a hatásfok a rugalmasság csúszás miatt alacsony. A kenőanyaggal működő berendezések kisebb a súrlódási tényező, de a kopás is, valamint jó a hőelvezetés, hűtés. A teljesítmény átvitel 0,1...100 kW nagyságrendű lehet.
5.37. ábra: Dörzskerekes fokozat nélkül állítható áttételű hajtóműtípusok a), b), c), d), e), f), kis teljesítmény átvitelére alkalmas hajtások g), h), i)

5.6.2. Vonóelemes fokozat nélkül állítható áttételű hajtások

A vonóelemes variátorok kedvezően viselkednek lőkésszerű igénybevételre, hatásfokuk elég jó, gyártásuk, javításuk általában egyszerű.

5.38. ábra: Variátor elv a), robogó hajtóműve b), ContiTech variátor vonóelem c), Bosch variátor elve d), Bosch variátor hatómű és vonóelem e), hajtómű LUK variátor vonóelemmel f)
6. FOGASKERÉK HAJTÓPÁROK TÍPUSAI FŐJELLEMZŐI ÉS PARAMÉTEREI. ALAPFOGALMAK

A fogaskerékhajtást az emberiség évszázadok óta használja. A fogazatok geometriája már a 18-19. században kialakult, de a geometriai és szilárdsági méretezés kifejlesztése jórészt a 20. században történt. A fogaskerékhajtást alkotó fogaskerekben kialakított fogazat biztosítja a kényszerkapcsolatot a tengelyek között. A fogaskerékhajtások feladata mozgás átvitele (forgó, hosszirányú eltolás), átalakítása illetve, nyomatékátvitel megvalósítása. A mozgásátvitel fogazatuk révén alakzárással történik, miközben a kimenő fordulatszámot is megváltoztathatják (módosíthatják) a bemenő fordulatszámhoz képest.

6.1. A fogaskerek csoportosítása: párhuzamos, metsződő és kitérő tengelyonalú fogaskerékhajtások

Az egymással kapcsolódó fogaskerek tengelyonalainak viszonylagos helyzete szerint párhuzamos, metsződő és kitérő helyzetű tengelyonalú hajtásokat különböztetünk meg.

Párhuzamos tengelyek esetén:

6.1. ábra: Fogazat kapcsolódások párhuzamos tengelyek esetén

Metsződő tengelyek esetén:
- A két tengely közötti kapcsolatot kúpkerekkel lehet megvalósítani, amelyek általában külső fogazatuk és kialakíthatóak egyenes, ferde vagy ívelt fogirányonvaló (6.2. ábra). A metsződő tengelyonalak által bezárt szög legtöbbször 90°, de ettől eltérő is lehet.
Kitérő tengelyek esetén:
- A hajtás megvalósítható az ún. csavarkerékpárral, amely különböző hajlás értelmű ferde fogazatú hengeres kerékpár különleges esete (6.3. ábra). A csigahajtást, amely hengeres csigából és csigakerékből áll, 90°-os tengelyszög esetén használják. A leggyakoribb kivitel a henger-globoide (6.3. ábra b) és a globoide-globoide hajtás. (6.3. ábra c). Hiperbolikus (hipoid) fogaskerekek is alkalmasak kitérő tengelyek között forgás- és nyomatékátvitelre.

6.2. ábra: Kúpfogazat kapcsolódások metsződő tengelyek esetén

6.3. ábra: Fogazat kapcsolódások kitérő tengelyek esetén

6.2. A fogakerékhajtások alapfogalmai: az áttétel és a fogszámviszony fogalma
A csúszásmentes gördülés feltétele a kapcsolódó kerekek gördülőköreinek érintkezési pontjában a kerületi sebességek megegyezése ($v_1 = v_2$), (6.4. ábra).
6.4. ábra: A gördülőkörökön lévő kerületi sebességek

\[v_1 = r_1 \cdot \omega_1 = r_1 \cdot 2\pi \cdot n_1 = v_2 = r_2 \cdot \omega_2 = r_2 \cdot 2\pi \cdot n_2, \]

ahol: az 1-es index a hajtó kerékre, a 2-es index a hajtott kerékre vonatkozik.

Ebből kifejezhető a hajtás áttétele:

\[i = \frac{\omega_1}{\omega_2} = \frac{n_1}{n_2} = \frac{r_2}{r_1} = \frac{d_2}{d_1}, \]

\[i > 1 \text{ lassító áttétel esetén,} \]
\[i < 1 \text{ gyorsító áttétel esetén.} \]

A kerekek fogszmám z -vel jelölve bevezethető a fogszmáviszony foga alma:

\[u = \frac{z_2}{z_1}, \quad u > 1, \]

ahol: az 1-es index a kisebb fogszmám kerékre (kiskerék), a 2-es index a nagyobb fogszmám kerékre vonatkozik.

Tehát lassító áttételnél \(i = u \), gyorsító áttételnél viszont \(i = \frac{1}{u} \).

6.3. Az áttétel állandósága. A fogazat kapcsolódás alapvető feltétele

A fogaskerékpár helyes fogazatkapcsolódásának alapvető feltétele, hogy \(i = \frac{\omega_1}{\omega_2} \) állandó maradjon a kapcsolódás egész folyamata alatt!

A szögsebesség arány (az áttétel) állandóságát a foggörbe helyes alakjának kell biztosítani! Ellenkező esetben káros rezgések, interferencia lépet fel, amely megakadályozza a helyes mozgásátvitelt.

Az áttétel állandóságának a feltétele, hogy a két fogprofil (\(\mathbf{p}_1, \mathbf{p}_2 \)) bármely érintkezési pontjában (P) állított közös fogmerőleges (n) átmenjen a C főponton (amely az \(r_1, r_2 \) körök érintkezési pontja), (6.5. ábra).
A P pontban a sugarak R1, R2, a kerületi sebességek \(v_1, v_2 \) nagyságúak. A profilmerőleges irányába eső sebességkomponenseknek egyenlőnek kell lenni (\(v_{n1} = v_{n2} \)) ahhoz, hogy a két fogprofil a kapcsolódás egész folyamata alatt érintkezésben maradjon:

\[
v_{n1} = R_1 \cdot \omega_1 \cdot \cos \psi_1 = R_2 \cdot \omega_2 \cdot \cos \psi_2 = v_{n2},
\]

6.5. ábra: Fogprofilok kapcsolódásának sebességviszonyai

az O1N1P és O2N2P háromszögekből:

\[
\cos \psi_1 = \frac{r_{b1}}{R_1}, \quad \cos \psi_2 = \frac{r_{b2}}{R_2},
\]

\[
R_1 \cdot \omega_1 \cdot \frac{r_{b1}}{R_1} = R_2 \cdot \omega_2 \cdot \frac{r_{b2}}{R_2}
\]

egyszerűsítések után: \(\frac{\omega_1}{\omega_2} = \frac{r_{b2}}{r_{b1}} = i \),

az O1N1C és O2N2C háromszögekből,

\[
i = \frac{r_{b2}}{r_{b1}} = \frac{r_2}{r_1} = \text{állandó}.
\]

Tehát bebizonyítottuk, hogy az áttétel állandó, ha a közös profilmerőleges átmegy a C főpon- ton. Ez a fogmerőlegességről szóló tétel (Willis-tétel). A kerületi sebességek érintőirányba eső sebességkomponensei nem egyenlők \(v_{n1} \neq v_{n2} \) (csak a C főpontban!), tehát csúszásról beszélünk. A csúszási sebesség: \(v_s = |v_{n1} - v_{n2}| \).

6.4. A kapcsolóvonal, az ellenprofil és a kapcsolószám

Az előző alfejezet alapján tehát beláttuk, hogyha felveszünk egy tetszőleges fogprofil, és az érintkezési ponton keresztül meghúzzuk a profilmerőlegest, akkor az átmegy a C főponton.
Ezen a módszeren nyugszik a Reuleaux szerkesztés, amely segítségével egy fogprofilhoz két lépésben megkaphatjuk az ellenprofilt:
- adott fogprofilhoz kapcsolóvonal szerkesztése (6.6. ábra a),
- adott fogprofilhoz és kapcsolóvonalhoz ellenprofil szerkesztése (6.6. ábra b).

A két kerék összegördítése során a kapcsolópont (az érintkezési pont) a fogprofilon vándorol. A kapcsolópontok összességét kapcsolóvonalnak nevezzük.

6.6. ábra: A kapcsolóvonal és az ellenprofil

© Balogh Tibor, SZE www.tankonyvtar.hu
A 6.6. ábra a. részén a tetszőlegesen felvett fogprofilon lévő pontokat a₁…aₙ-nel jelöltük. A szerkesztés menetét az a₁ ponthoz tartozó A kapcsolópont megszerkesztésén keresztül mutatjuk be.

- Az a₁ ponton keresztül körivet rajzolunk, mivel az a₁ csakis az O₂ középpontból húzott köríven mozoghat.

- Az a₁ pontban a foggörbére merőlegest állítunk, ami kimetszi az a₁ talppontot. Az \(\overline{a_ia_1}\) távolság a fogmerőlegesszessz.

- Az a₁ kapcsolódási helye az A pont egyrészt rajta van az a₁-en keresztül rajzolt köríven (a fejkörön), másrészt a C főponttól \(\overline{a_1a_i}\) távolságra helyezkedik el (\(\overline{AC}\)), mivel a kapcsolódás pillanatában az a₁ a C-ben van!

Hasonlóan kapjuk a k₁…k₇ kapcsolópontokat is.

Az ellenprofil b₁…bₙ pontjait (6.6. ábra b) a kapcsolóvonalból és a fogprofilból kiindulva a fogmerőlegesség-tétel újbóli alkalmazásával tudjuk megszerkeszteni. A szerkesztés menetét az A kapcsolóponthoz tartozó b₁ ellenprofill pontos meghatározásán keresztül mutatjuk be.

- A kerekek összegördítésekor az a₁…aₙ talppontok meghatározzák az ellenprofil a₁…aₙ talppontjait.

- A \(\overline{b_ia_i}\) távolságnak ugyanakkorának kell lenni mint az \(\overline{a_ia_1}\) távolságnak!

- Az A kapcsolópont az ellenkeréken az \(O_1\) középpontú köríven mozolhat el, tehát a₁-ből \(\overline{a_1a_i}\) távolsággal elmetssük a körívet, akkor megkapjuk a b₁ pontot.

Egy fogoldal kapcsolódása során, a gördülőkörökön az \(\overline{a_ia_n}\) és \(\overline{a_ia_n}\) ivdarabok gördülnek le egymáson. Ahhoz, hogy a folyamatos kapcsolódást biztosíthassák tudjuk, a teljes \(a_ia_n\) iv legör dulése előtt a következő fogpárnak is már érintkezésbe kell lépni egymással! Ez azt jelenti, hogy a fogak gördülőkörön (osztókörön) mért távolságának, vagyis a \(p\) osztásnak kisebbnek kell lenni, mint az \(a_ia_n\) ívhosszúság!

A profilkapcsolószmádot a következőképpen definiálták:

\[
\varepsilon_a = \frac{\overline{a_ia_n}}{p} > 1
\]

A helyes kapcsolódás érdekében a profilkapcsolószám minimális értéke \(\varepsilon_a = 1,15 - 1,2\) lehet!
7. A FOGAZATOK ALAPTULAJDONSÁGAI ÉS JELLEMZŐI

7.1. Fogprofilalakok
Foggörbénak minden olyan profilgörbe használható, amelyekre érvényes az előzőekben ismertetett fogmerőlegességről szóló tétele. A gyakorlatban háromféle görbe használatos: körív, körciklois, körevolvens.

a) A körív fogazat

Ennek a fogazat kialakításnak a hátránya, hogy
- a profilkapcsolószám kicsi,
- a tengelytává változásra nagyon érzékeny,
- és külön fogazószerszám kell mindkét kerékhöz.

![Körív profilú fogazat](image)

b) epiciklois foggörbe
c) hipociklois foggörbe

7.1. ábra: Körív profilú fogazat és ciklois foggörbék

© Balogh Tibor, SZE

www.tankonyvtar.hu
b) A kör-ciklois

Abban az esetben, ha kört gördítünk le körön a legördülő kör és a mereven hozzá csatolt sík minden pontjának mozgás pályájaként ciklois görbét kapunk. Régebben általánosan használták az epiciklois és a hipociklois fogprofilt. Ha az alapkör \((r_b)\) külső részén gördítünk le egy \(\rho\) sugarú kört, akkor a kör egy kijelölt \(P\) pontja epicikloist ír le (7.1. b ábra). Hipocikloist kapunk, ha az alapkör \((r_b)\) belső részén gördítjük le a \(\rho\) sugarú kört (7.1. c ábra). (Az \(r_b\) és a \(\rho\) arányától függően a ciklois görbe alakja különböző lesz.) A ciklois fogazatú fogaskerekek teljesíthetik azt az alapvető követelményt, hogyha a hajtó kerék fordulatszáma állandó, akkor a hajtott fogaskerék fordulatszáma is állandó.

A ciklois fogazatú kerekek előnyei:
- kis fogszámmal is gyártathatók,
- a homorú és domború fogoldalak kapcsolódása miatt a teherbírásuk nagyobb, mint az evolvens fogazatú fogaskerekeké.

Hátránya, hogy
- minden fogsámmhoz és fogmérethez más szerszámot kell készíteni,
- a fordulatszám állandóságához a fogaskerekek tengelytávolságát pontosan kell beállítani.

Az evolvens görbe a ciklois görbe határesete. Egyedülálló gyártástechnológiai előnyei és a lehetséges tengelytáv változtatás miatt a legele передне́ бём foggörbe az evolvens. A továbbiakban csak evolvens fogprofilt fogaskerekekkel foglalkozunk.

7.2. A körevolvens származtatása

Egy \(r_b\) sugarú alapkörön, ha csúszásmentesen legördítünk egy egyenest, akkor az egyenes bármely pontja evolvens görbét ír le.

Az alapkör érintési pontja \(N\). Az evolvens egy tetszőleges pontja \(P_y\). A \(PN = r\) érintőszakasz hosszúsága megegyezik a \(PN\) alapkörüívosszúsággal (7.2. ábra).
7.2. ábra: A köreolvens származtatása

Tehát a P_{YO} derékszögű háromszöget felhasználva kiszámítható a PYN befogója, melynek az egyenes legördülése miatt egyenlőnek kell lennie a PN alapköré ivhosszal:

$$\rho_y = r_y \cdot \tan \alpha_y = \overline{PN} = r_y (\alpha_y + \psi), \quad \tan \alpha_y = \alpha_y + \psi.$$

Mivel az ψ szög csak α_y-től függ, egyváltozós függvénynek tekinthető, jelöljük az $\psi(\alpha_y) = \text{inv}(\alpha_y)$ névvel. (Az involut az evolvens latin neve. Az inv nem az inverz szóra utal!)

Ezek alapján az ún. involut szög kifejezhető: $\text{inv} \alpha_y = \tan \alpha_y - \alpha_{y\text{rad}}$.

A kifejezés utolsó tagjában az α_y értékét radiánban kell behelyettesíteni.

$$\text{inv} \alpha_y = \tan \alpha_y - \frac{\alpha_y \cdot \pi}{180^\circ}.$$

A P_{YO} derékszögű háromszögből meghatározható a fogazatkapcsolódásban alapvető jelentőségű α_y középponti szög:

$$\cos \alpha_y = \frac{r_y}{r_y} \quad \text{vagy} \quad r_y = r_y \cdot \cos \alpha_y.$$

Mivel a képletből kifejezhető r_y csak α_y-től függ, függvénynek is tekinthető: $r_y(\alpha_y) = r_y / \cos(\alpha_y)$. E két utolsó α_y függvény együtt az evolvens polárkoordinátás egyenletrendszere.

A 7.2 ábra további fontos következtetések levonására alkalmas az evolvens görbe tulajdonságaira vonatkozóan:
• Mivel az alapkörön legördülő egyenes pillanatnyi forgáspontja az N pont, az N-ből a
tetszőleges \(P_y \)-ba mutató szakasz nem más, mint az evolvens \(P_y \)-beli \(\rho_y \) görbületi suga-
gara.
• Ugyanebből következik, hogy az evolvens érintője \(P_y \)-ban a \(\rho_y \) görbületi sugárra me-
rőleges.
• Az evolvensre minden pontjában csak olyan normálisa húzható, amely a \(r_b \) sugarú
alapkörét érinti.
• Bármely \(OP_y = r_y \) sugarú O középpontú körnek \(P_y \)-ban meghúzott érintője és az
evolvens \(\rho_y \) normálisa \(\alpha_y \) szögét zár bár egymással. (A merőleges szárú szögek
egyenlőek.) Ezért az \(\alpha_y \) szöget evolvens fogazat esetén az adott sugárhoz tartozó kap-
csolószögének is nevezzük.

7.3. Az alaposztás meghatározása
A 7.3. ábrán szomszédos fogprofilokat alkotó evolvens görbék láthatóak, amelyek a \(t \) szár-
maztató egyenes legördítésével jöttek létre.

7.3. ábra: Az alaposztás értelmezése a körevolvens görbék segítségével

Az evolvensek kiinduló pontjai \((1, 2, 3)\) az alapkörön kijelölik az alaposztást \((p_b)\). Az érintő
egyenesek mentén az evolvensek azonos távolságra \((p_b)\) helyezkednek el egymáshoz képest.
Az ábrán feltüntettük az osztást az osztókörön \((p)\) és egy tetszőleges sugáron \((p_y)\). Az osztás
az adott sugarú kör kerületének egy fogra eső része. \((z \ a \ fogszám.)\nÍgy az alap(köri) osztás \(p_b = 2 \cdot r_y \cdot \pi / z \), az bármely körön az osztás \(p_y = 2 \cdot r_y \cdot \pi / z \).

Tehát az osztás a sugárral arányos:

\[
\frac{r_b}{r_y} = \frac{p_b}{p_y} \quad \text{vagy} \quad \frac{r_b}{r} = \frac{p_b}{p}.
\]

Az előző fejezet szerint az alaposztás kifejezhető:

\[
p_b = p_y \cdot \cos \alpha_y \quad \text{vagy} \quad p_b = p \cdot \cos \alpha = m \cdot \pi \cdot \cos \alpha.
\]
Az index nélküli \(r, p \) és \(\alpha \) az evolvens fogazatú fogakerék osztókörén érvényes sugár, osztás és (szerszám) kapcsolósörg mennyiséget jelenti. Az \(m \) a később definiálandó modul mennyiséget jelöli.

7.4. Az evolvens fogazat kapcsolóvonalra

A fogazatok kapcsolódása során az érintkezési pont a fogprofilokon vándorol. Mivel az érintkezés a közös fogmerőleges mentén történik emiatt, evolvens profilok esetén ez egy egyenes az ún. kapcsolóvonal, amely egyben az alapkörök érintője \((N_1, N_2)\) is lesz (7.4. ábra).

7.4. ábra: Az elemi evolvens fogazat kapcsolóvonalra

A valós érintkezési hossz az \(\overline{N_1N_2} \) szakasznál kisebb, mivel a nagykerék fejkörén jelölt \(A \) pontban lép érintkezésbe a két kerék, majd a kölcsönös elfordulás után a kiskerék fejkörén lévő \(E \) pontban szűnik meg a kapcsolat. Így a kapcsolóvonal hosszúsága: \(\overline{AE} = g_\alpha \) (kapcsolóhossz). Mivel a kapcsolóvonal pontjai csúsztasmentesen „felfekerednek” az alapkörökre, az \(\overline{AE} \) távolság ívhosszban megjelenik az alapkörön, összevethető az aránya az alapkörü fogosztással, ami nem más, mint az \(e_\alpha \) profilkapcsolószmá. Vagy a kapcsolóvonalra „letekeredik” az alaposztás (v.ö. 7.3. ábra), és innen is kiadódik a profilkapcsolószmá. Sőt, a fejkörökönél megrajzolható profilnormálisok osztókörö talppontjainak \(C \) pontig tartó össz ívhossza az osztókörö osztással összevetve szintén ugyanezt a profilkapcsolószámot adja. (v.ö. a 6.6. ábraval.)

Az ábrán a kapcsolóvonal hajlasszögét \(\alpha \)-val jelöltük.

7.5. Az evolvens fogazat tengelytáváltozása

Evolvens profilok esetén a kapcsolódás helyessége nem függ a tengelytávolságtól, mivel ugyanakkora alapkörösugarú evolvensek különböző részei ugyanúgy használhatóak fogaprofilként. A tengelytávolság növelésével \((a_w > a) \) a kapcsolósörg is növekedik \((\alpha_w > \alpha) \). Az \(r_1 \) és \(r_2 \) (osztókörösugarak) \(r_{v1} \) és \(r_{v2} \)-re (gördülőkörösugarak) módosulnak (7.5. ábra).
A tengelytávolságok:

\[a = r_1 + r_2, \quad a_w = r_{w1} + r_{w2}. \]

Az alapkörssugarak kifejezhetők az osztókör- és gördülőkörssugarakból:

\[r_{bl} = r_1 \cdot \cos \alpha = r_{w1} \cdot \cos \alpha_w, \]
\[r_{b2} = r_2 \cdot \cos \alpha = r_{w2} \cdot \cos \alpha_w, \]

a gördülőkörssugarak:

\[r_{w1} = r_1 \cdot \frac{\cos \alpha}{\cos \alpha_w} \quad \text{és} \quad r_{w2} = r_2 \cdot \frac{\cos \alpha}{\cos \alpha_w}. \]

Ezek felhasználásával a megváltozott tengelytávolságot, amit általános tengelytávnak is neveznek, kifejezhetjük:

\[a_w = r_{w1} + r_{w2} = r_1 \frac{\cos \alpha}{\cos \alpha_w} + r_2 \frac{\cos \alpha}{\cos \alpha_w} = \left(r_1 + r_2 \right) \frac{\cos \alpha}{\cos \alpha_w} = a \cdot \frac{\cos \alpha}{\cos \alpha_w}. \]

Átrendezve a következő alapot kapjuk:

\[a_w \cdot \cos \alpha_w = a \cdot \cos \alpha. \]

7.6. Evolvens fogazatok gyártása lefejtő eljárással

Az evolvens fogprofilú fogaskerék gyártása fogasléc alakú szerszámmal történhet a legelőnyösebb módon, mivel a kinematikai kapcsolat az előzőekben ismertetett módon körön egyenes legördítéssel egyezik meg. Tehát, ha a gyártandó kerék osztókörén a szerszám osztóvonalát csúszásmentesen legördítjük, akkor a fogasléc profil különböző helyzetekhez tartozó burkológörbe a kapcsolódó kerék (evolvens) foggörbékéjét adjja (7.6. ábra).
7.6. ábra: A fogazat lefejtésének elve

7.6.1. A modul és az osztás fogalma

A fogaskerek méreteinek meghatározására bevezették a modul \((m)\) fogalmát, melynek méretválasztékát nemzetközi megállapodás szerint szabványosították. Az alapprofil egyes geometriai méreteit a modul segítségével határozzuk meg.

A szabványos modul sorozat kivonata MSZ 434 és DIN 780 szerint \((1 \text{ mm} \leq m \leq 10 \text{ mm})\)

| 1. sorozat | 1 | 1,25 | 1,5 | 2 | 2,5 | 3 | 4 | 5 | 6 | 8 | 10 |
| 2. sorozat | 1,125 | 1,375 | 1,75 | 2,25 | 2,75 | 3,5 | 4,5 | 5,5 | 7 | 9 |

Az osztókörátmérő a modullal és a fogszámmal:

\[d = m \cdot z. \]

Az osztókör kerületén \(z\) db fogat elosztva kapjuk az osztóköri iven mért osztást:

\[p = \frac{d \cdot \pi}{z} = \frac{m \cdot z \cdot \pi}{z} = m \cdot \pi. \]

A modult azokban az országokban használják, ahol az ISO mértérendszer van használatban. Az angolszász országokban a modul helyett a „Diametral Pitch“ \(P_d \) (inch\(^{-1}\)) használatos.

\[P_d = \frac{z}{d} \]

Evolvens profilú hengeres kerekek szerszámalapprofilja a 7.7. a ábrán látható. Míg az evolvens hengeres kerekek alapprofilját a 7.7. b ábra mutatja.

© Balogh Tibor, SZE www.tankonyvtar.hu
A szabvány által meghatározott evolvens alapprofil (fogasléc) a vele megegyező modulú fogaskerekkel hézagmentesen kapcsolódik, és az ugyanilyen kialakítású kerekek egymással is képesek helyesen kapcsolódni.

7.6.2. A fogazat alapvető elnevezései, jelölései

A 7.8. ábra alapján tanulmányozhatjuk a fogazat fogfelületeit, geometriai méreteit a megadott jelölések alapján.

7.8. ábra: A fogazat alapvető elnevezései, jelölései
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Symbol</th>
<th>Definition</th>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>osztás</td>
<td>(m)</td>
<td>modul</td>
<td>(d)</td>
<td>osztóköriátmérő</td>
</tr>
<tr>
<td>(h_f)</td>
<td>foglábmagasság</td>
<td>(h_a)</td>
<td>fogfejmagasság</td>
<td>(d_a)</td>
<td>fejkörátmérő</td>
</tr>
<tr>
<td>(b)</td>
<td>fogszélesség</td>
<td>(d_f)</td>
<td>lábkörátmérő</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_f)</td>
<td>fogtó lekerekítési sugár</td>
<td>(e)</td>
<td>osztóköri fogárokszélesség</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>teljes fomagasság</td>
<td>(d_t)</td>
<td>határkörátmérő</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s)</td>
<td>osztóköri fogvastagság</td>
<td>(s_a)</td>
<td>fogfejvastagság</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. FOGAZATTÍPUSOK

8.1. Külső, egyenes fogazatú hengeres kerekek

8.1.1. Elemi fogazatkapcsolódás

Ha a fogaskerékpár mindkét tagját profilmódosítás nélkül gyártották le, ez a két fogaskerék hézagmentesen kapcsolódik (képes együtt járni) az \(a = r_1 + r_2 \) elemi tengelytávolságon, akkor elemi fogazatról beszélünk. (Ebben az esetben a két kerék középpontja közötti távolság az előbb említett elemi tengelytávolságot \((a) \) adja ki.)

Egymással kapcsolódó elemi fogazású kerekek a 8.1. ábrán láthatóak.

8.1. ábra: Egymással kapcsolódó elemi fogazású kerekek jelölései

A fejmagasság:

\[h_a = h_a^* \cdot m, \]

ahol: a fejmagasságértéke általában \(h_a^* = 1 \),

a lábmagasság:

\[h_f = h_a^* \cdot m + c^* \cdot m, \]

ahol: \(c \) a lábhézag, a lábhézagtényező értéke általában \(c^* = 0,25 \), (de egyes estekben lehet \(c^* = 0,35 \) is),

a teljes fogmagasság:

\[h = h_a + h_f = m \cdot (2 \cdot h_a^* + c^*), \]

a működő (közös) fogmagasság:
\[h_w = 2 \cdot h_a = 2 \cdot m \cdot h_a^+ . \]

Az osztókörátmérőhöz a fejmagasság kétszeresét kell hozzáadni, hogy a fejkörátmérőt kapjuk:

\[d_a = d + 2 \cdot h_a = m \cdot z + 2 \cdot m \cdot h_a^+ = m \cdot (z + 2 \cdot h_a^+) . \]

Az osztókörből a lábmagasság kétszeresét kell levonni, hogy a lábkörátmérőt kapjuk:

\[d_f = d - 2 \cdot h_f = m \cdot z - 2 \cdot m \cdot h_f^+ - 2 \cdot c^+ \cdot m = m \cdot (z - 2 \cdot h_f^+ - 2 \cdot c^+) . \]

A tengelytávolság:

\[a = \frac{d_1 + d_2}{2} = \frac{m \cdot z_1 + m \cdot z_2}{2} = m \cdot \left(\frac{z_1 + z_2}{2}\right) . \]

Az osztókörátmérő felírható a következő formában is:

\[a = \frac{d_1 + d_2}{2} = \frac{m \cdot z_1 + m \cdot z_2}{2} = m \cdot \left(\frac{z_1 + z_2}{2}\right) . \]

\[d_1 = m \cdot z_1 = \frac{2 \cdot a}{1 + u} \quad \text{vagy} \quad d_2 = m \cdot z_2 = \frac{2 \cdot a}{1 + u} \cdot u . \]

Elemi fogazatnál az osztóköri fogvastagság és a fogárokszélesség egyenlő:

\[s = \frac{e}{2} = \frac{m \cdot \pi}{2} . \]

8.1.2. A profileltolás

Profileltolásról akkor beszélünk, ha a lefejtő gyártás során a gyártandó kerék osztókörén nem a szerszám középvonala gördül le, hanem egy ezzel párhuzamos másik vonala, amit osztóvonalnak nevezzünk. A szerszám középvonal osztóvonalától való kihúzásának mértéke \(x \cdot m \), ahol az \(x \) profileltolástényező előjel dimenzióttalan szám.

Ha az elemi fogazathoz képest a szerszámprofil fő a kerék középpontjától kifelé mozdítható, akkor pozitív profileltolás jön létre (8.2. ábra). Abban az esetben viszont, ha befelé mozdítható, akkor negatív profileltolással készített kerék alakul ki.

8.2. ábra: A profileltolás iránya
A profileltolás hatására változik a fejkörátmérő \((d_a)\) és a lábkörátmérő \((d_f)\) mérete, valamint az osztóköri fogvastagság \((s)\) értéke. Pozitív profileltolással készített fogazat esetén (8.3. a ábra) a fejkör- és lábkörátmérőt a profileltolás kétszeresével \((2 \cdot x \cdot m)\) megnövekedik:

\[d_a = m \cdot (z + 2) + 2 \cdot x \cdot m, \quad d_f = m \cdot (z - 2 - 2 \cdot e^*) + 2 \cdot x \cdot m. \]

\[A \text{ profileltolás iránya} \]

\[a) \text{ Pozitív profileltolással készített fogazat} \]

\[b) \text{ Negatív profileltolással készített fogazat} \]

8.3. ábra: A profileltolással készített fogazat kialakítása

Az osztóköri fogvastagság (a 8.3. a ábra alapján) \(2 \cdot x \cdot m \cdot \tan \alpha\) értékkel változik meg:

\[s = \frac{m \cdot \pi}{2} + 2 \cdot x \cdot m \cdot \tan \alpha. \]

Negatív profileltolással készített fogazat esetén (8.3. b ábra), mivel \(x\) előjeles mennyiség, a fejkör, a lábkör és az osztóköri fogvastagság értékei csökkennek.

A 8.4. ábrán tekinthető meg összefoglalva a profileltolás hatása a fog alakjára.
A profileltolás alkalmazásának célja lehet:
- jobb csúszási és kopási viszonyok elérése,
- megadott tengelytávolság betartása,
- az alámetszés elkerülése,
- nagyobb teherbírás megvalósítása.

8.1.3. A kompenzált fogazat
Abban az esetben, ha az egyik keréken pozitív profileltolást a másik keréken ugyanakkora nagyságú negatív profileltolást alkalmazunk, kompenzált fogazatról beszélünk: $x_1 = -x_2$.

A fogvastagságok összege megfelel az elemi fogazat osztásával ($p = m \cdot \pi$), ezért a két kerék az osztókörön tud legördülni, vagyis a tengelytávolság megegyezik az elemi tengelytávval:

$$a_{\text{komp}} = a_{\text{elemi}} = m \cdot \frac{z_1 + z_2}{2}.$$
b) A szükséges kapcsolószám

A levezetés mellőzésével evolvens fogazatra felírható a következő összefüggés:

$$\frac{d_{a}d_{a}}{a_{n}} = \frac{AE}{\cos \alpha}$$

Ezt a profilkapcsolószám előzőleg megismert definíciójába behelyettesítve:

$$\varepsilon_{\alpha} = \frac{d_{a}d_{a}}{p} = \frac{AE}{p \cdot \cos \alpha} = \frac{AE}{p_b}$$

Tehát a profilkapcsolószám (ε_{α}) definíciója evolvens fogazat esetén úgy is megfogalmazható, hogy a kapcsolóhossz $AE = g_{\alpha}$ osztva a szomszédos profilok kapcsolóegyenesen mért hosszával, azaz az alaposztással (p_{b}):

$$\varepsilon_{\alpha} = \frac{g_{\alpha}}{p_{b}} = \frac{AE}{m \cdot \pi \cdot \cos \alpha}.$$

Szükséges a megfelelő kapcsolódáshoz, hogy $g_{\alpha} = AE > p_{b}$ teljesüljön, mert különben bármelyik fogpár csak az előző fogpár szétválasza után léphetne érintkezésbe! Így 15-20%-os átfedéssel számolva:

$$\varepsilon_{\alpha, \text{min}} = 1,15 - 1,2.$$

8.5. ábra: A profilkapcsolószám kiszámításához

A 8.5. ábra segítségével a következő összefüggések írhatók fel:

$$AE = AN_{z} - N_{z}E,$$
$$N_{z}E = N_{z}N_{z} - N_{z}E.$$

www.tankonyvtar.hu © Balogh Tibor, SZE
az első egyenletbe behelyettesítve a másodikat:

\[
AE = AN_2 + N_1E - N_1N_2,
\]

\[
AN_2 = \sqrt{r_{u_2}^2 - r_{b2}^2}, \quad N_1E = \sqrt{r_{u_1}^2 - r_{b1}^2},
\]

\[
N_1N_2 = r_1 \cdot \sin \alpha + r_2 \cdot \sin \alpha = a \cdot \sin \alpha.
\]

Általános fogazat esetén az \([N_1N_2]/(a \cdot \sin \alpha)\) kifejezést kell a kapcsolószám összefüggésébe helyettesíteni!

Tehát a profil kapcsolószám elemi és kompenzált fogazat esetén:

\[
\varepsilon_{\alpha} = \frac{\sqrt{r_{u_1}^2 - r_{b1}^2} + \sqrt{r_{u_2}^2 - r_{b2}^2} - a \cdot \sin \alpha}{m \cdot \pi \cdot \cos \alpha}.
\]

Megjegyzés: A B és D pont a kapcsolóvonalon megmutatja az egy fogpár kapcsolódás határait: Amíg a fogprofilok az AB szakaszon kapcsolódnak, a fogosztás miatt a ED szakaszon az előző fogpár még nem lépett ki a kapcsolódásból. E két szakaszon tehát két fogpár kapcsolódás van, a fogra merőleges fógerő fele lép fel a terhelés átadáskor a kapcsolódó pontokon. Míg a BD kapcsolóvonal szakaszon egy fogpár kapcsolódás van, a teljes normál fógerő ezen adódik át.

c) Az alámetszés elkerülése

A határkerék fogságm alatti fogsázmú fogaskerekkeknél a fogasléc szerszám belemetsz a foglábor evolvens profiljába. A \(z_{lim}\) határkerék fogsázm, mint e pontban megmutatjuk, függ az \(\alpha\) szerszám kapcsolózöstől, a \(h_a\) fejmagasságrendezőtől, az \(x\) profileltolástényezőtől (fogazási paraméterektől). 8.6 ábra. Ilyen jelenséget mutat a 7.6. ábra is.

\[
\text{Szerszám középvonal}
\]

\[
8.6. \text{ábra: Az alámetszés hatása}
\]

Ezt a jelenséget alámetszésnek nevezzük. Az alámetszés nagyon hátrányos, mivel szilárdságilag gyengű a fogtövet és csökkenti a kapcsolóhosszat.
Az alámetszés határesetében az evolvens az alapkörön kezdődik, és a kapcsolóvonal kezdőpontja (A) egybeesik a kapcsolóvonal alapkőri érintkezési pontjával (N_{lim}), 8.7. a ábra.

![Diagram](image_url)

a) Az alámetszés határesete

Az ábra alapján meghatározható az ún. határfogszám (z_{lim}) h_{a}^{*} = 1 esetén:

\[
N_{lim}C = \frac{m \cdot z_{lim}}{2} \cdot \sin \alpha , \quad \text{illetve} \quad N_{lim}C = \frac{m}{\sin \alpha} \Rightarrow
\]

\[
\frac{m \cdot z_{lim}}{2} \cdot \sin \alpha = \frac{m}{\sin \alpha} \Rightarrow z_{lim} = \frac{2}{\sin^{2} \alpha} \approx 17 .
\]

Tehát z_{lim} = 17 , ha \ x = 0 , \ h_{a}^{*} = 1 \ és \ \alpha = 20^{\circ} .

Az alámetszés elkerülésének legáltalánosabban használt módszere a (pozitív) profileltolás alkalmazása.

A **8.7. b ábra** hasonló háromszögei alapján írhatjuk:
\[
\frac{F_{\text{lim}}}{FC} = \frac{N_{\text{lim}}}{NC}, \quad \frac{N_{\text{lim}}}{NC} = r_{\text{lim}} \Rightarrow \]
\[
F_{\text{lim}} : FC = r_{\text{lim}} \cdot r, \]
\[
m : (m - x_{\text{lim}} \cdot m) = \frac{m \cdot z_{\text{lim}}}{2} : \frac{m \cdot z}{2}.
\]
Az egyenletet rendezve kapjuk az alámetszés elkerüléséhez szükséges profileltolás-tényező értékét:
\[
x_{\text{lim}} = h_{x}^{\star} - \frac{z}{2} \cdot \sin^{2} \alpha.
\]
Illetve:
\[
z_{\text{lim}} = \frac{2 \cdot (h_{x}^{\star} - x)}{\sin^{2} \alpha}.
\]

8.1.5. A fogvastagság kiszámítása tetszőleges sugáron

Az előzőek alapján szükséges lehet a fogvastagság meghatározására különböző sugarakon (\(r_{w}\) - gördülőkörsugár, \(r_{a}\) - fejkörsugár, \(r_{y}\) - tetszőleges sugár) vagy átmérőkön. A 8.8. ábrán nyomon követhetjük a meghatározás módját.

8.8. ábra: A fogvastagság kiszámítása tetszőleges sugáron

A tetszőleges sugárhoz (átmérőhöz) tartozó fogvastagság (\(s_{y}\)) a \(\delta\) középponti szög többféle módon történő felirása alapján határozható meg, (\(\delta = \text{involut szög} + \text{felfogvastagsághoz tartozó középponti szög}):
\[
\delta = \text{inv}\alpha + \frac{s}{2 \cdot r} = \text{inv}\alpha_y + \frac{s_y}{2 \cdot r_y}.
\]

Az egyenletet átrendezve a fogvastagság tetszőleges sugáron:

\[
s_y = 2 \cdot r_y \cdot \left(\frac{s}{2 \cdot r} + \text{inv}\alpha - \text{inv}\alpha_y \right).
\]

Az osztóköri fogvastagság figyelembevételével:

\[
s_y = 2 \cdot r_y \left(\frac{m \cdot \pi}{2} + 2 \cdot x \cdot m \cdot \text{tg}\alpha}{m \cdot z} + \text{inv}\alpha - \text{inv}\alpha_y \right),
\]

\[
s_y = 2 \cdot r_y \left(\frac{\pi + 4 \cdot x \cdot \text{tg}\alpha}{2 \cdot z} + \text{inv}\alpha - \text{inv}\alpha_y \right).
\]

Az egyenletben \(\alpha_y \) a következő összefüggésből határozható meg:

\[
\cos\alpha_y = \frac{r}{r_y} \cdot \cos\alpha
\]

8.1.6. Általános fogazat

Igény lehet a nagyobb teherbírás elérése, illetve kötetlen tengelytávolság (az elemi tengelytávnál nagyobb) megvalósítása. Az evolvens görbék tulajdonságainak tanulmányozásakor láttuk, hogy nincs akadálya a nem elemi tengelytávon \((a_w) \) történő kapcsolódásnak.

Abban az esetben, ha a fogaskerékpárt nem elemi tengelytávon járatjuk hézamentes kapcsolódással, általános fogazatot kapunk.

Tehát az általános fogazat főbb változásai:

- a tengelytáv \(a - r \rightarrow a_w - re \) változik,
- a kapcsolószög \(\alpha - r \rightarrow \alpha_w - re \) változik,
- az osztókör \(d \) és a gördülőkör \(d_w \) szétválnak egymástól.

A 8.9. ábrán két egymással kapcsolódó általános fogazatú kerékpár látható a jellemző méretek feltüntetésével.
8.9. ábra: Általános fogazatú kerekek kapcsolódása

A most következő levezetés a hézamentes fogkapcsolódás megvalósításához szükséges profilmódosítás mértékét határozza meg egy fogakerékpáron általános fogazatra. A fogaskerekek gördülőköréi vannak ekkor csúszásmentes kapcsolatban egymással.

Ezért írhatjuk, hogy a gördülőkörı osztás egyenlő lesz a két gördülőkörı fogvastagság összegével: $p_w = s_w + s_{w2}$. Az 1-es jelű kerék osztására vonatkozó egyenlet:

$$
\frac{2 \cdot r_{w1}}{z_1} \cdot \pi = 2 \cdot r_{w1} \cdot \left(\frac{s_1}{2 \cdot r_1} + \text{inv}_{\alpha} - \text{inv}_{\alpha_w} \right) + 2 \cdot r_{w2} \cdot \left(\frac{s_2}{2 \cdot r_2} + \text{inv}_{\alpha} - \text{inv}_{\alpha_w} \right)
$$

Az osztókörı fogvastagságokra (s_1, s_2) az előzőekben levezetett összefüggéseket használjuk:

$$
s_1 = \frac{m \cdot \pi}{2} + 2 \cdot x_1 \cdot m \cdot \text{tg} \alpha,
$$

$$
s_2 = \frac{m \cdot \pi}{2} + 2 \cdot x_2 \cdot m \cdot \text{tg} \alpha,
$$

valamint figyelembe véve a gördülőkörök csúszásmentes gördülését lassító áttételnél:

$$
r_{w2} = u \cdot r_{w1} = \frac{z_2}{z_1} \cdot r_{w1}.
$$

A helyettesítésekkel és a 8.1.5. fejezet felhasználásával a fenti egyenlet a következő alakra hozható:

$$
\frac{2 \cdot r_{w1}}{z_1} \cdot \pi = 2 \cdot r_{w1} \cdot \left(\frac{\pi}{2 \cdot z_1} + 2 \cdot x_1 \cdot \frac{\text{tg} \alpha}{z_1} + \text{inv}_{\alpha} - \text{inv}_{\alpha_w} \right) +
$$

$$
+ \frac{z_1}{z_1} \cdot 2 \cdot r_{w1} \cdot \left(\frac{\pi}{2 \cdot z_2} + 2 \cdot x_2 \cdot \frac{\text{tg} \alpha}{z_2} + \text{inv}_{\alpha} - \text{inv}_{\alpha_w} \right)
$$
Az egyenlet mindkét oldalát \(\frac{2 \cdot r_{w1}}{z_1} \) kifejezéssel osztva:

\[
\pi = \frac{\pi}{2} + 2 \cdot x_1 \cdot \tan \alpha + z_1 \cdot (\text{inv} \alpha - \text{inv} \alpha_w) + \\
+ \frac{\pi}{2} + 2 \cdot x_2 \cdot \tan \alpha + z_2 \cdot (\text{inv} \alpha - \text{inv} \alpha_w),
\]

\[0 = 2 \cdot (x_1 + x_2) \cdot \tan \alpha + (z_1 + z_2) \cdot (\text{inv} \alpha - \text{inv} \alpha_w) .\]

Bevezetve a profileltolások összegére a \(\Sigma x = x_1 + x_2 \) összefüggést, a fenti egyenletből előírt tengelytáv \((a_w)\) esetén kiszámítható a profileltolások összege:

\[\Sigma x = x_1 + x_2 = \frac{z_1 + z_2}{2} \cdot \frac{(\text{inv} \alpha_w - \text{inv} \alpha)}{\tan \alpha} .\]

Egyelőre csak a fogaskerékpár profileltolás tényezőinek összegét ismerjük, de nem tudjuk külön-külön meghatározní az \(x_1 \) és \(x_2 \) profileltolástényezőket. A legalapvetőbb szempont az, hogy a kisfogaskerék ne legyen alámetászott, tehát teljesítse az \(x_1 > x_{1\text{lim}} \) feltételt. Természetesen az \(x_2 > x_{2\text{lim}} \) feltételt is ellenőrizni kell. További szempont a \(\Sigma x \) felosztására a relatív csúszáskiegyenlítés, hogy ne legyen fogkihegyesedés (a fogcsónkítás mellett) és a fogsilárdás is teljesüljön.

A megváltozott kapcsolószöget \((\alpha_w)\) az ismert \(a_w \cdot \cos \alpha_w = a \cdot \cos \alpha \) egyenletből határozhatjuk meg. A tengelytáv változását kifejezhetjük a modullal:

\[a_w - a = y \cdot m .\]

ahol: \(y \) tengelytávtényező a következő formában is kifejezhető:

\[y = \frac{a_w - a}{m} = \frac{a}{m} \left(\frac{a_w}{a} - 1 \right) = \frac{z_1 + z_2}{2} \cdot \frac{(\cos \alpha - \cos \alpha_w)}{\cos \alpha_w} .\]

A 8.9. ábrából látható, hogyha a fogsagasság nem változna a két pozitív profileltolás \(x_1 \cdot m \) és \(x_2 \cdot m \) nagysággal megnövelné a fejkör sugarakat (szaggatott vonal). Ebben az esetben a tengelytáv: \(x_1 \cdot m + x_2 \cdot m = \Sigma x \cdot m \) értékkel növekedne, de láttuk, hogy a növekedés mértéke a valóságban csak \(y \cdot m \) mértékű.

Ezért a fejkör sugarakon fogcsónkítást kell végrehajtani, azaz \(\Sigma x \cdot m - y \cdot m = (\Sigma x - y) \cdot m \) értékkel kisebbre kell készíteni! Így a működő fogsagasság is kisebb lesz \((\Sigma x - y) \cdot m \) értékkel:

\[h_w = 2 \cdot h_w^* \cdot m - (\Sigma x - y) \cdot m .\]
Az előzőek alapján a fejkörátmérők $2 \cdot (\Sigma x - y) \cdot m$ mértékben csökkennek a kompenzált fogazathoz képest:

$$d_{a1} = m \cdot \left[z_1 + 2 \cdot h^* + 2 \cdot x_1 - 2 \cdot (\Sigma x - y) \right],$$
$$d_{a2} = m \cdot \left[z_2 + 2 \cdot h^* + 2 \cdot x_2 - 2 \cdot (\Sigma x - y) \right].$$

A lábkörátmérők változatlanok maradnak:

$$d_{f1} = m \cdot \left(z_1 - 2 \cdot h^* - 2 \cdot c^* + 2 \cdot x_1 \right),$$
$$d_{f2} = m \cdot \left(z_2 - 2 \cdot h^* - 2 \cdot c^* + 2 \cdot x_2 \right).$$

8.1.7. Az evolvens fogazat csúszási viszonyai

A csúszásebesség változása

A 6.5 ábrán bemutattuk az érintőirányú sebességkomponens vektorokat majd definiáltuk a csúszási sebességet: $v_i = |v_{i1} - v_{i2}|$. A vektórábra alapján az érintőirányú sebességkomponenseket a következőképpen írhatjuk fel:

$$v_{i1} = v_1 \cdot \sin \psi_1 = R_1 \cdot \omega_1 \cdot \sin \psi_1,$$
$$v_{i2} = v_2 \cdot \sin \psi_2 = R_2 \cdot \omega_2 \cdot \sin \psi_2.$$

Tehát a csúszási sebesség:

$$v_s = |v_{i1} - v_{i2}| = |R_1 \cdot \omega_1 \cdot \sin \psi_1 - R_2 \cdot \omega_2 \cdot \sin \psi_2|.$$

Evolvens görbére a 6.5 ábra felhasználásával a

$$\rho_1 = \overline{N_1P} = R_1 \cdot \sin \psi_1 \text{ és } \rho_2 = \overline{N_2P} = R_2 \cdot \sin \psi_2$$

összefüggés határozhato meg a görbületi sugárra. A görbületi sugár értelmezését a 8.10. ábra az A első kapcsolópontban történő érintkezéskor mutatja.
Behelyettesítve a csúszásebesség egyenletébe (figyelembe véve, hogy $\omega_1 = u \cdot \omega_2$):

$$v_s = |\rho_1 \cdot \omega_1 - \rho_2 \cdot \omega_2| = |\rho_1 \cdot u \cdot \omega_2 - \rho_2 \cdot \omega_2| = \omega_2 |u \cdot \rho_1 - \rho_2|.$$

A csúszási sebesség változását a kapcsolóvonal mentén 8.11. ábrán láthatjuk. Az érintőirányú sebességkomponensek az előzőek szerint lineárisan változnak az N_1 és N_2 pontok között. Ezért a csúszásebesség változását az ábrán bejelölő különbség metszékek határozzák meg. Megfigyelhetjük, hogy a C főpontban a csúszási sebesség nullával egyezik meg, vagyis itt tiszta gördülés van!

Az abszolút és relatív csúszás értelmezése

Láttuk, hogy a kapcsolódó fogazatok közös érintőirányába eső sebességkomponensei nem egyenlők: $v_{1i} \neq v_{2i}$, ezért a fogprofílok csúsznak egymáson. A 8.10. ábrán a kapcsolóegyenes bekapcsolják a kapcsolódó fogazat közös érintőirányába eső elemeik az N_1 és N_2 pontok között. Az $d\varphi_1$ és $d\varphi_2$ elemi szögelfordulásokhoz a kapcsolódás környezetében $i_1 = \rho_1 \cdot d\varphi_1$ és $i_2 = \rho_2 \cdot d\varphi_2$.

www.tankonyvtar.hu
© Balogh Tibor, SZE
elemi ívhosszak tartoznak. Δt idő alatt az egymáson elmozduló ívhosszak, ha $d\varphi = \omega \cdot \Delta t$, a következő alakban írhatók fel:

$$i_1 = \rho_1 \cdot d\varphi = \rho_1 \cdot \omega_1 \cdot \Delta t \quad \text{és} \quad i_2 = \rho_2 \cdot d\varphi = \rho_2 \cdot \omega_2 \cdot \Delta t.$$

Az ívdarabok csúszással érintkeznek egymással, ami kopáshoz és a fogazat tönkremeneteléhez is vezethet. A csúszás mértékét az egymáson elmozduló ívhosszak arányával lehet megadni. Kétféle mérőszámot vezettek be.

Abszolút csúszásnak az egymáson elmozduló ívhosszak arányszámát nevezzük:

$$y_1 = \frac{i_2}{i_1} = \frac{\rho_2 \cdot d\varphi_2}{\rho_1 \cdot d\varphi_1} = \frac{\rho_2 \cdot \omega_2 \cdot \Delta t}{\rho_1 \cdot \omega_1 \cdot \Delta t} = \frac{\rho_2}{\rho_1} u$$

$$y_2 = \frac{i_1}{i_2} = \frac{\rho_1 \cdot d\varphi_1}{\rho_2 \cdot d\varphi_2} = \frac{\rho_1 \cdot \omega_1 \cdot \Delta t}{\rho_2 \cdot \omega_2 \cdot \Delta t} = \frac{\rho_1}{\rho_2} u = \frac{1}{y_1}$$

Ha a csúszva megtett út arányát a csúszásmentesen (gördülve) megtett úthoz viszonyítjuk, akkor a relatív csúszást kapjuk:

$$\theta_1 = \frac{\rho_2 \cdot d\varphi_2 - \rho_1 \cdot d\varphi_1}{\rho_1 \cdot d\varphi_1} = \frac{\rho_2}{\rho_1} u - 1 = y_1 - 1, \quad \rho_1 < N_1 C$$

$$\theta_2 = \frac{\rho_1 \cdot d\varphi_1 - \rho_2 \cdot d\varphi_2}{\rho_2 \cdot d\varphi_2} = \frac{\rho_1}{\rho_2} u - 1 = y_2 - 1, \quad \rho_1 > N_1 C$$

A relatív csúszás a kapcsolódás kezdő- (A) és végpontjában (E) a következőképpen határozható meg:

$$\theta_A = \frac{\rho_{2A} \cdot u}{\rho_{1A} \cdot u} - 1 \quad \text{és} \quad \theta_E = \frac{\rho_{1E} \cdot u}{\rho_{2E} \cdot u} - 1.$$

Tehát a relatív csúszás értéke egy olyan dimenziótlan mérőszám, amely a csúszva meggett út viszonyát fejezi ki a gördülve meggett úthoz.

Az evolvens fogazat csúszásgörbét

A $\Theta = f(\rho)$ függvény, az itt nem tárgyalt levezetéssel, bizonyítható, hogy egyenlő oldalú hiperbola. A 8.12. ábrán az egyenes fogazat csúszásgörbéinek szerkesztése látható. Az y_1 csúszás hiperbolának az aszimptótáit az N_1 pontban húzott függőleges és az $1/u$ távolságban húzott vízszintes határozza meg. Az y_2 hiperbolának az N_2 pontban húzott függőleges és az u távolságban húzott vízszintes adja meg az érintőt. Ha az N_1/N_2-vel egy egység távolsággal párhuzamos húzunk, akkor az ábrából leolvashatjuk a relatív csúszás értékéket (y_1, y_2 görbe és 0° 0’ egyenes közötti metszékek). Az A és E pontokban a relatív csúszás értéke θ_A és θ_E nagyságú. A relatív csúszás legnagyobb értéke általában az A pontban van (θ_A), tehát kopás.
szempontjából a kiskerék lábrészé lesz veszélyes. Ennek elkerülésére megoldás lehet, ha a két keréken a relatív csúszás értékeket egyenlővé próbáljuk tenni $\theta_A = \theta_E$, azaz kiegyenlítjük őket, a fogazatgeometria helyesbítésével (a profileltolások megfelelő felvételével).

![Diagram](image)

8.12. ábra: Az evolvens fogazat csúszásgörbéi

A relatív csúszás kiegyenlítésének grafikus eljárása

Az eljárás azon alapul, hogy az A ill. E pontokban lévő relatív csúszás értékeket több szerkesztési lépésben próbáljuk egyenlővé tenni úgy, hogy eközben Σx és h_w állandó maradjon. A szerkesztés célja, hogy megkapjuk a fogfejmagasságot a nagyobbik keréken (h_{a_2}), majd ezt felhasználva a kiskerék profoteletolási tényezőjét (x_1) számíthatjuk. Először nézzük a szerkesztés lépéseit a 8.13. a ábra alapján:
a) *A relatív csúsztás kiegyenlítésének grafikus eljárása*

b) *A relatív csúsztás számításához*

8.13. ábra: *A relatív csúsztás kiegyenlítése*

1. Az a_w, r_{a1} és r_{a2} ismeretében kijelöljük a középponti egyenesen az O_1, O_2 és C pontokat.

2. Az α_w ismeretében, felvesszük az O_1N_1 és O_2N_2 egyeneseket, valamint berajzoljuk az N_1N_2 kapcsolóegyenest merőlegesen az O_1N_1 ill. O_2N_2 egyenesekre.

3. A kapcsolóegyenessel párhuzamosan egységnyi távolságra behúzzuk az s segédegyeneset. A C főponton keresztül merőlegest állítunk az N_1N_2 egyenesre (m jelű egyenes).

4. Az s és m egyenes metszéspontján keresztül az N_1 és N_2 pontokat felhasználva kijelöljük a P_1 és P_2 pontokat.

5. A számított h_w közösfogmagasság értékét felmérjük a középponti egyenesre úgy, hogy a C főpont a h_w szakasz felezőpontja körül helyezkedjen el. (A h_w kijelölő az 1-es és 2-es pontokat.) Az O_1 és O_2 középpontokból az 1-es és 2-es pontokon keresztül köriveket húzzunk, amelyek kimetszik az A és E pontokat az N_1N_2 egyenesen.

6. A P_1 A és P_2 E pontokat összekötjük és meghosszabbítjuk az m egyenesig.

7. Ha az így megrajzolt egyenesek az m egyenesen nem egy pontban metszik egymást, akkor a szerkesztést meg kell ismételni mindaddig, amíg ez nem sikerül. (A h_w szakaszt eltoljuk a középponti egyenesen lefelé vagy felfelé.)

8. Az ordináták egyenlőségekor az ábrából leolvassuk a h_{a2} értékét.

A h_{a2} értékét felhasználva a kiskerék lábkörsugarakat profileltolásos és általános fogazat esetében egyenlővé téve kapjuk:

$$r_1 - h_w \cdot m - c^* \cdot m + x_1 \cdot m = r_{a1} - h_{a2} - c^* \cdot m,$$
\[h_z^* = 1 \quad \text{és} \quad r_i = \frac{m \cdot z_i}{2} \]

helyettesítéssel a profileltolás-tényező a kiskeréken:

\[x_i = \frac{r_{w1} - z_1}{m} + 1 - \frac{h_{u2}}{m}, \]

a profileltolás-tényező a nagykeréken: \(x_2 = \Sigma x - x_1 \).

Német szakirodalomban található a Maag gyár képlete a profileltolás-tényező számítására:

\[x_i \approx \frac{\Sigma x}{2} + \left(0,5 - \frac{\Sigma x}{2} \right) \cdot \frac{\lg u}{\lg z_1 \cdot z_2 \cdot 100}. \]

8.1.8. Fogazattartomány és fogazatrendszerek

Az előzőekben foglalkoztunk a fogazati rendszerek alkalmazhatóságának határaival (fogkihegyesedés, kapcsolószám, alámetszés), amelyek egy bizonyos geometriai korlátot jelentenek a fogaskerek megvalósíthatóságára. Ismerjünk meg egy új fogalmat a fogtő-interferenciát. A fogtő-interferencia esetében az egyik kerék fogának fejéle a másik kerék fogtőfelületével érintkezik, és így nem teljesül az általános kapcsolódási törvény. Tehát nincs egyenletes szögsebességátvitel, azaz az áttétel nem állandó. Ez rezgéseket okoz, amit feltétlenül el kell kerülni! Ha az e mlített geometriai korlátokat a fogsámm (z) és a kapcsolószög (\(\alpha_w \)) koordinátarendszerben ábrázoljuk, akkor egy érvényes fogazattartományt kapunk. A fogazattartományon belül megvalósíthatjuk a fogazatot, míg a határgörbékében kívül a geometriai okok miatt nem lehet vagy nem célszerű a fogaskerékpárt legyártani. A 8.14. ábra alapján (amely \(u=1 \) áttételre készült) vizsgáljuk meg közelebbről a korlátokat.
8.14. ábra: A fogazattartomány határai \(u=1 \) esetén

A fogaprofilok alámetszése a fogaskerékhatás szilárdaságát, terhelhetőségét csökkenti, ezért mindenféle célra erőltetni! A klasszikus (elméleti) alámetszési határ alatt helyezkedik el a működő alámetszési határ, ami a kis fogságok felé határolja a tartományt.

A profilkapcsolószám minimális értékét, mint láttuk \(\varepsilon_{u_{\text{min}}} = 1,15 - 1,2 \) fölé célszerű választani.

A 8.14. ábrán a kapcsolószám határ \(\varepsilon_{\alpha} = 1 \) feltételezéssel adódik.

Az ábrán látható, hogy az alsó interférenciahatár aszimptotikusan közelít az \(\alpha = 20^\circ \) alaprofil-szög függőlegesséhez. Minél inkább eltér a kapcsolószög \((\alpha_w) \) értéke az alapprofil-szögétől \((\alpha) \), annál szűkebb lesz a gyártáshoz használható tartomány.

Abban az esetben, ha \(u \neq 1 \), akkor a határgörbék természetesen módosulnak. A görbék elhelyezkedését a profilletolások összegének \((\Sigma x = x_1 + x_2) \) felosztása is befolyásolja, amely kivitelezésére különböző fogazati rendszerek jöttek létre:

- kompenzált \((x_1 = -x_2, \text{ Lasche 1899}) \),
- általános fogazás kopáskiegyenlítésre alapozva \((\text{Maag 1917}) \),
- relatívcsúszás kiegyenlítés \((\text{Vörös-Diker}) \),
- csúszásisebesség kiegyenlítés \((\text{Niemann}) \),
- élettartam kiegyenlítés \((\text{Huebner}) \),
- AE fogazat \((\text{Botka Imre}) \),
- szabványosított \((\text{DIN 3992}) \).

A sokféle fogazatrendszer közül a tervezőnek kell kiválasztani, hogy melyiket használja a különböző alkalmazási esetekben, mert nincs közöttük egyértelműen eldöntető optimális megoldás.
8.2. Ferde fogazat

8.2.1. A ferde fogazat kialakulása és alapfogalmai

A 8.15. a ábra az egyenes és ferde fogazat keletkezését mutatja be.

![Diagram of a flat and inclined fogazat showing the angle between the flat and inclined planes.](https://example.com/diagram)

a) Az egyenes és ferde fogazat keletkezésének elve

![Diagram showing the formation of a flat and inclined fogazat.](https://example.com/diagram)

b) Különböző átmérőkhöz tartozó foghajlásszögek ferde fogazatnál

8.15. ábra: Ferde fogazat keletkezése és foghajlásszögei

Az alaphengeren csúszásmentesen legördülő sík (kapcsolósík) bármely az alaphenger tengelyével párhuzamos egyenese előállítja az egyenes fogfelületet.

Ha ezen a kapcsolósíkon az előző egyenessel β_b szöget (alaphengerni foghajlásszög) bezáró egyenest jelölünk ki, ez a legörödí dés során ferde fogfelületet hoz létre (evolvens csavarfelület).

Ha az alaphengerrel koncentrikus hengereket veszünk fel (r, r_w sugárral), ezeket sikba terítve a csavarfelületből a csavarmenet menetmelkedési háromszögeit metszi ki, 8.15. b ábra.

Az ábrán β az osztóhengerni foghajlásszöget, p_x a közös menetmelkedést (axiális osztást) jelenti.

\[
p_x = \frac{d_h \cdot \pi}{\tan \beta_b} = \frac{d \cdot \pi}{\tan \beta} \quad \Rightarrow \quad d = \frac{\tan \beta_b}{\tan \beta} = \cos \alpha_i \Rightarrow \tan \beta_b = \tan \beta \cdot \cos \alpha_i.
\]
Az α_t- homlokkapcsolószög jelentését lásd később.

A 8.16. ábrán egymással kapcsolódó ferde fogazatú fogaskerékpár látható a jellemző méretek és met-szetek feltüntetésével. Ferde fogazat az egyeneshez hasonlóan gyártható Maag-fogazógépen. Annyi eltéréssel, hogy a gyártott fogaskérők osztóhengerével (ez az osztókört tartalmazó, tengellyel párhuzamos alkozó henger) legördüléses kapcsolatban lévő osztókörökhez (ez az osztóvonalat tartalmazó érintősikja az osztóhengernek) rögzített egyenes mozgású gépasztalon a henger alkozójával β osztókori fogferdeségi szöget állítunk be a fésű kés mozgási irányának, miközben a fésű profil síkját is β-val vele együtt elforgatjuk. A ferde fogazatok előállításához az egyenes fogazathoz szabványosított fésű késeket kell alkalmazni. Mivel a kés az osztókörön a fogirányra merőlegesen halad és erre merőleges a fésűs kés síkja, a fésű kés eredeti méreteit néha a normál(-metszeti) jelzővel egészítsük ki (normál modul $m_n = m$, normál osztás $p_n = p$, normál szerszám kapcsolószög $\alpha_n = \alpha_t$), fogaskeréknek ezen síkmetszetét pedig a normál metszetének hívjuk. A fogaskérők forgástengelyére merőleges metszetének a neve: homlokkemetszet. Jelölése t index-szel (homlok(-metszeti) modul m_t, homlok osztás p_t, homlok szerszám kapcsolószög α_t). A homlokkemetszet és a normálkemetszet sikja egymással β szöget zár be.

8.16. ábra: A normál- és homlokkemetszet értelmezése ferde fogazatú fogaskerékpárról
Az \(\mathbf{N-N} \) normálmetszet és a \(\mathbf{H-H} \) homloktemszet hajlászöge általában \(10^\circ \leq \beta \leq 30^\circ \) (osztóhengeri foghajlászög). A normálmetszetben a fogazat magassági méretei, osztása, modulja és kapcsolószöge megegyezik az egyenes fogazat méreteivel. A homloktemszetben (jelölésben \(t \) index-szel jelöljük) a fogazat magassági méretei változatlanok, a szélességi méretei viszont nőnek. Így növekszik a homlok-osztás \(p_i \), a homlokmodul \(m_i \) és a homlokkapcsolószög \(\alpha_i \). A 8.16. ábra szerint:

\[
\frac{p}{p_i} = \cos \beta \quad \Rightarrow \quad p_i = \frac{p}{\cos \beta} = \frac{m \cdot \pi}{\cos \beta} = m_i \cdot \pi,
\]

ahol: a homlokmodul: \(m_i = \frac{m}{\cos \beta} \).

a homlokkapcsolószög változása:

\[
\cos \beta = \frac{2 \cdot m \cdot h_x^* \cdot \tan \alpha}{2 \cdot m \cdot h_x^* \cdot \tan \alpha_i} \quad \Rightarrow \quad \tan \alpha_i = \frac{\tan \alpha}{\cos \beta}.
\]

8.2.2. Az elemi, a kompenzált és az általános ferde fogazat összefüggései

A ferde fogazat homlokemszetében az osztással összefüggő méreteket a homlokmodullal \((m_i)\) fejezzük ki.

Az osztókörátmérő:

\[
d = m_i \cdot z = \frac{m}{\cos \beta} \cdot z.
\]

Figyelembe véve, hogy tiszta evolvens kapcsolódás a homlokemetszetben van, ezért a homlokkapcsolószög \((\alpha_i)\) értékével kell az alapkör-átmérő méretét kiszámolni:

\[
d_b = m_i \cdot z \cdot \cos \alpha_i.
\]

Az elemi ferde fogazat

A fogazat magassági méreteit mindig a normálmodullal fejezzük ki. Ezért elemi fogazatnál a következő összefüggések érvényesek:

a fejkörátmérő:

\[
d_a = m_i \cdot z + 2 \cdot h_x^* \cdot m,
\]

a lábkörátmérő:

\[
d_f = m_i \cdot z - m \cdot (2 \cdot h_x^* + 2 \cdot c^*),
\]

a fogvastagság az osztókörön:

\[
s = \frac{p_i}{2} = \frac{m_i \cdot \pi}{2},
\]

a tengelytáv:

\[
a = m_i \cdot \frac{z_i + z_j}{2}.
\]
A kompenzált ferde fogazat

Kompenzált fogazatnál \((x_1 = -x_2) \) az osztókörátmérő, az alapkörátmérő és a tengelytávolság értéke ugyanaz, mint elemi fogazatnál. A többi mérté változása:

a fejkörátmérő: \[d_a = m_t \cdot z + m \cdot (2 \cdot h^* + 2 \cdot x), \]
a lábkörátmérő: \[d_l = m_t \cdot z - m \cdot (2 \cdot h^* + 2 \cdot c^* - 2 \cdot x), \]
a fogvastagság az osztókörön: \[s = \frac{m_t \cdot \pi}{2} + 2 \cdot x \cdot m \cdot \tan \alpha. \]

Az általános ferde fogazat

Az általános ferde fogazatnál még a következő összefüggések érvényesek:

a fejkörátmérő: \[d_a = m_t \cdot z + m \cdot \left[2 \cdot h_a^* + 2 \cdot x - 2 \cdot \left(\sum x - y \right) \right], \]
a homlokkapcsolószög: \[\cos \alpha_w = \frac{a_\alpha \cdot \cos \alpha}{a_w}, \]
a profileltolások összege: \[\Sigma x = x_1 + x_2 = \frac{z_1 + z_2}{2} \cdot \left(\frac{\mathrm{inv} \alpha_w - \mathrm{inv} \alpha}{\tan \alpha} \right), \]
a tengelytávtényező: \[y = a_w - a \cdot \frac{m}{m} = \frac{z_1 + z_2}{2} \cdot \left(\cos \alpha - \cos \alpha_w \right) \cdot \cos \alpha_w. \]

8.2.3. A ferde fogazat kapcsolószámai

A kapcsolószám meghatározását a 8.17. ábrán követhetjük figyelemmel, ahol az alaphenger kiterített palástjának egy részletét láthatjuk.

![Diagram](image)

8.17. ábra: A ferde fogazat kapcsolószáma

A homlokalaposztás: \[p_{bt} = m_t \cdot \pi \cdot \cos \alpha, \]
az axiális osztás: \[p_s = \frac{p_{bt}}{\tan \beta} = \frac{m_t \cdot \pi \cdot \cos \alpha}{\tan \beta} = \frac{m_t \cdot \pi}{\tan \beta}. \]
Ferde fogazatnál úgy vehetjük, hogy az \(AE = g_a \) kapcsolóhossz \(AF = g_β \) szakasszal meghosszabbodik.

Így az összkapcsolószám:

\[
\varepsilon = \frac{g_a + g_β}{p_{bt}} = \frac{g_a}{p_{bt}} + \frac{g_β}{p_{bt}} = \varepsilon_a + \varepsilon_β.
\]

Az egyenes fogazatnál megismert módon számítható \(\varepsilon_a : \)

\[
\varepsilon_a = \frac{AE}{p_{bt}} = \frac{N_1E + N_2A - N_1N_2}{p_{bt}}
\]

\[
\varepsilon_a = \frac{\sqrt{r_{a1}^2 - r_{b1}^2} + \sqrt{r_{a2}^2 - r_{b2}^2} - a \cdot \sin \alpha_t}{m_1 \cdot \pi \cdot \cos \alpha_t}.
\]

Általános ferde fogazatnál a számláló utolsó tagja \(a_w \cdot \sin \alpha_w \)-re módosul.

A ferde fogazat úgynevezett átfedése:

\[
\varepsilon_β = \frac{g_β}{p_{bt}} = \frac{b \cdot \tg β_b}{p_x \cdot \tg β_b} = \frac{b}{p_x},
\]

az axiális osztás előzőleg meghatározott értékével:

\[
\varepsilon_β = \frac{b}{p_x} = \frac{b \cdot \tg β}{m_1 \cdot \pi} = \frac{b \cdot \sin β}{m \cdot \pi}.
\]

8.2.4. Az alámetszés elkerülése ferde fogazatnál

Az alámetszési határfogszám értéke ferde fogazatnál:

\[
z_{lim} = \frac{2 \cdot \cos β}{\sin^2 \alpha_t} \cdot \left(h_a^* - x \right) .
\]

Az alámetszés elkerüléséhez szükséges profileltolás-tényező értékének számítása:

\[
x_{lim} = h_a^* - \frac{z \cdot \sin^2 \alpha_t}{2 \cdot \cos β}.
\]

A ferde fogazat előnyei:

- rezgésmentes, csendes üzem,
- a fgvastagság növekedése miatt nagyobb teherbírás,
- kisebb alámetszési határfogszám,
8. FOGAZATTÍPUSOK

- egyszerre több fog van kapcsolódásban, nagyobb kapcsolószám.

hátránya:

- a kapcsolódó fogfelületek közötti erőnek axiális komponense is van, amely a tengelyt és a csapágyázást járulékosan terheli.

8.3. Belső fogazat

8.3.1. A belső fogazatú kerekek geometriája

Belső kapcsolódás esetén a nagykerék, ami belső fogazatú kerék, gördülökörén belül gördül le a kiskerék gördülököre, ami külső fogazattal készül. Így a két fogaskerék forgásiránya megegyezik. A belső fogazat fogprofiljának kontúrvonala megegyezik egy pontosan ugyanolyan paraméterű külső fogazatéval, de a fog és fogárok felcserélődik oly módon, hogy a külső fogazat fogának a belső fogazat fogárka, míg a külső fogazat fogárának a belső fogazat foga felel meg, a lábkör és a lekerekitéssel együtt a Fellows metszőkerék által kimunkálva a külső lábkörátmérőhöz kerül. 8.18. a ábra. Belső fogazatú gyűrűkerék használhatja például a bolygómotoros hajtásokban, ami a járműiparban nagyon elterjedt.

![Belső fogazat Diagram](8.18. a ábra)

8.3.2. A belső és külső fogazat kapcsolódása

8.18. ábra: A belső és külső fogazat elrendezései

A belső fogazatú nagykerék (2-es index) és a kisebb méretű külső fogazatú kiskerék (1-es index) a 8.18. b ábrán bemutatott elrendezésben kapcsolódhat egymáshoz.

A belső fogazat előnyei:

- kis helyszükséglet,
- jó hatásfok,
- nagy teherbírás (a domború és homorú felületpár kapcsolódása miatt a Hertz feszültség kedvezőbben alakul),

© Balogh Tibor, SZE www.tankonyvtar.hu
a fogirány mindkét kerékknél azonos,
profilkapcsolószám nagyobb, mint egyenes fogazatnál,
relatív csúszások értékei sokkal kisebbek, mint egyenes fogazatnál
bolygókerakes hajtóműben felhasználható.

Hátrányai:
- csak fogaskerék alakú szerszámmal gyáartható, a Fellows fogazókésnek nem elemi fogazat esetén a profilmódosítást tartalmaznia kell, a szabványos modulokon belül a profileltolások is csak szabványos választék szerintiek lehetnek,
- többféle interferenciára hajlamos (gondos geometriai tervezéssel elkerülhető),
- a kiskerék tengelye nem lehet átmenő, ezért csak egy oldalról csapágyazható.

8.19. ábra: A belső és külső fogazat kapcsolódási viszonyai és méretei

Az alapkör sugár változatlan marad:

\[r_{b2} = \frac{m \cdot z_2}{2} \cdot \cos \alpha, \]

Elemi fogazat esetén a tengelytávolság:

\[a = r_2 - r_1 = m \cdot \frac{z_2 - z_1}{2} = m \cdot \frac{\Delta z}{2}, \]

az osztóköri fogvastagság:

\[s_2 = \frac{m \cdot \pi}{2}, \]

a fejkörátmérő:

\[d_{a2} = m \cdot (z_2 - 2 \cdot h_a^*), \]

www.tankonyvtar.hu

© Balogh Tibor, SZE
a lábkörátmérő: \[d_{f_2} = m \cdot (z_2 + 2 \cdot h_u + 2 \cdot c^*) \].

Kompenzált fogazat esetén a tengelytáv az elemi tengelytávval megegyezik:

\[a_{\text{komp}} = a \].

A tengelytáv változatlanságának feltétele a profileltilázási tényezők egyenlősége: \(x_1 = x_2 \).

Ebben az esetben az osztókőri fogyasztását:

\[s_2 = \frac{m \cdot \pi}{2} - 2 \cdot x_2 \cdot m \cdot \tan \alpha \],

a fejkörátmérő:

\[d_{a_2} = m \cdot (z_2 - 2 \cdot h_u^* + 2 \cdot x_2) \],

a lábkörátmérő:

\[d_{f_2} = m \cdot (z_2 + 2 \cdot h_u^* + 2 \cdot c^* + 2 \cdot x_2) \].

Általános fogazat készítésekor nem szükséges a fejmagasságot módosítani, ezért a kompenzált fogazatra érvényes összefüggések \((s_2, d_{a_2}, d_{f_2})\) használhatóak.

A gördülőkör fulfillagarak:

\[r_{w1} = \frac{a_w}{u-1}, \quad r_{w2} = u \cdot r_{w1} \],

A kapcsolószög:

\[\cos \alpha_w = \frac{a \cdot \cos \alpha}{a_w} \].

Az általános külső egyenes fogazatra levezetett összefüggések \((\Sigma x, y)\) belső fogazatnál a következőképpen változnak:

\[\Delta x = x_2 - x_1 = \frac{z_2 - z_1}{2} \cdot \left(\frac{\text{inv} \alpha_w - \text{inv} \alpha}{\tan \alpha} \right) \],

\[y = \frac{a_w - a}{m} = \frac{z_2 - z_1}{2} \cdot \left(\frac{\cos \alpha}{\cos \alpha_w} - 1 \right) \].

8.3.2. A belső fogazat kapcsolószáma

A **8.20. ábra** alapján nyomon követhetjük a profilkapcsolószám \((e_w)\) számítását belső fogazatnál. \(g = a_w \cdot \sin \alpha_w \) (\(g = a \cdot \sin \alpha \) elemi és kompenzált fogazatnál).
8.20. ábra: A belső fogazat kapcsolószámához

\[\rho_{1K} = \sqrt{r_{a_1}^2 - r_{b_1}^2} \quad \text{és} \quad \rho_{2A} = \sqrt{r_{a_2}^2 - r_{b_2}^2}. \]

\[\varepsilon_\alpha = \frac{g_a}{p_b} = \frac{AE}{m \cdot \pi \cdot \cos \alpha} = \frac{g + \rho_{1K} - \rho_{2A}}{m \cdot \pi \cdot \cos \alpha} = \frac{a_w \cdot \sin \alpha + \sqrt{r_{a_1}^2 - r_{b_1}^2} - \sqrt{r_{a_2}^2 - r_{b_2}^2}}{m \cdot \pi \cdot \cos \alpha}. \]

A profilkapcsolószám értéke mindig nagyobb lesz belső fogazatnál, mint azonos geometriájú külső kapcsolódású fogaskerékpár esetén, mivel az A pont távolabb van a C főponttól.

8.3.3. A belső kapcsolódás csúszásviszonyai

A belső kapcsolódásnál a \(\Psi_2 \) csúszási hiperbola lefelé fordul a külső fogazathoz képest. Az egyik aszimptotája az \(N_2 \)-ben húzott függőleges, a másik az \(N_2 \) felett, a kapcsoló egyenes felül \(u \) távolságban húzott párhuzamos egyenes. A megszerkesztett csúszási hiperbolákat a 8.21. ábra mutatja.
8.21. ábra: A belső kapcsolódás relatív csúszásgörbét

A külső fogazatú kiskerék csúszási hiperbolójának az alakja nem változik. A relatív csúszások számítási összefüggései hasonlóan alakulnak, mint egyenes fogazatnál.

A relatív csúszások az \overline{AC} szakaszon:

$$\vartheta_1 = \frac{\rho_2}{\rho_1 \cdot u} - 1, \quad N_1A \leq \rho_1 \leq N_1C, \quad \rho_2 - \rho_1 = N_1N_2$$

a \overline{CE} szakaszon:

$$\vartheta_2 = \frac{\rho_1 \cdot u}{\rho_2} - 1, \quad N_2C \leq \rho_2 \leq N_2E$$

Természetesen a ρ_1 és ρ_2 értékeket a belső fogazat kapcsolódási viszonyinak megfelelően kell meghatározni!

Elemi belső fogazatot nem érdemes használni a relatív csúszások közötti viszonylag nagy különbségek miatt. Pozitív profileltolással (kompenzált ill. általános fogazással) könnyen el lehet érni, hogy a csúszási metszék értékek kisebbek legyenek. Tehát megállapíthatjuk, hogy belső fogazat alkalmazása esetén a relatív csúszásmetszékek (ϑ_A, ϑ_E) jóval kisebbek lesznek, mint az ugyanolyan fogsázmű külső fogaskeréknél. A kisebb csúszás kisebb melegedést és kopást eredményez, ami a kenés körülményeit javítja. A kisebb csúszások miatt a relatív csúszás kiegyenlítésénél belső fogazat esetén nincs olyan jelentősége, mint külső fogazatnál. (Az előzőleg megismert szerkesztést értelemszerűen alkalmazhatjuk a belső kapcsolódásra is.)

8.3.4. A belső kapcsolódás interferenciái

A belső fogazatnál többféle interferencia jelenség léphet fel, mint külső fogazatnál, ezért nagy figyelmet kell fordítani azok elkerülésére. Az interferenciák két nagy csoportra oszthatóak: működési (kapcsolódási) és gyártási (előállítási) interferencia. A következőkben csak röviden ismertetjük a főbb interferencia típusokat és azok főbb jellemzőit.
A működési interferencia fajták:

- evolvens interferencia: r_{a2} fejkörsugár nagyobb az r_{b2} alapkörsugárnál és a kapcsolóvonalat az N_1N_2 szakaszon belül metszi,
- belső fogtő-interferencia: a belső fogazat fejköre a külső fogazat H_1 határpontja alatt kapcsolódik,
- külső fogtő-interferencia: a Δz fogszámkülönbség kis értéke esetén jön létre,
- fogfej-interferencia: kis Δz fogszámkülönbség miatt a külső és belső fogazat fejélpontjai ütköznek egymással,
- elfordulási interferencia: $\Delta z = 1$ vagy 2 esetén a kiskerék egyáltalán nem tud elfordulni a nagykerékben.

A működési interferenciák elkerülhetők, ha a fogazat fogmagasságát csökkentjük, vagyis alacsony fogazatot készítünk. $h_n^- < 1$.

Gyártási interferencia fajták:

- előtolási interferencia: a lefejtő megmunkálás során a metszőkerék a neki útjában lévő fogprofilokat (fogfejeket) lemetszi. Akkor fordul elő, ha a belső fogazat fogszáma alapmetszőkerék fogszámmal végzik a fogazást.
- előállítási fogtő-interferencia: kis fogszámu metszőkerék esetében jöhet létre.

8.4. Kúpkerék hajtások

8.4.1. A kúpkerekek kapcsolódása, alapfogalmai és fogazat típusok

8.22. ábra: A gömbi evolvensek alapkúpjai

A felvett alapkúpcsúcsok az O gömbközéppontban helyezkednek el. Ha a kapcsolódó kúpkerekek alapkúpjaihoz érintősíkot szerkesztünk, akkor a gömbi evolvensek kapcsolósi kúpját kapjuk, amely a gömb középpontját tartalmazza. A kapcsolóvonal a gömbfelület és a kapcsolósi metszésvonalaként
adódik, ami egy gömbi főkörív. Mivel az evolvens fogazatú kúpkerekek nem kényesek a tengelyszög betartására és gyártástechnológiai szempontból is előnyösebbek a gömbi cikloisnál, ezért szinte kizárólag evolvens fogazatú kúpkereketet szoktak alkalmazni.

A kúpkerekeket a fogak alakja illetve a magasságának változása alapján csoportosíthatjuk. A kúpkerekek a fogirányvonal alakja szerint lehetnek: egyenes, ferde, ívelt és zerol (A zerol fogazat az ívelt fogú kúpkerék egy különleges esete) 8.23.a ábra. A fogmagasság a foghossz mentén állandó vagy változó lehet (8.23.b ábra).

![Diagram](https://example.com/diagram.png)

a) A fogirányvonal alakja szerint

![Diagram](https://example.com/diagram.png)

b) A fogmagasság változó vagy állandó

8.23. ábra: A kúpkerekek típusai

Vizsgáljuk meg általánosságban egy \(\delta_1 \) és \(\delta_2 \) osztókúpszögű kúpkerék kapcsolódási viszonyait a 8.24. ábra alapján.
Miközben a kúpkerekek a fogfelületeiken futó gömbi evolvenseik mentén folyamatosan hézagramentes kapcsolódásban vannak egymással, megvalósítva az állandó áttételt, a hajtás látszólag ugyanúgy viselkedik, mintha csúszásmentes dörzskapcsolat lenne két, közös alkotója mentén érintkező gördülőkúp között. Mivel az evolvens fogazatú kúpkérőpárokat csak elemi vagy kompenzált foga zattal készítik, a kúpkérkajtásoknál a gördülőkúp és az osztókkúp itt ugyanazt jelenti, egymás szinonimája, külön jelzése sincs.

Az 1 és 2 jelű gördülőkúpok csúszásmentesen gördülnek le egymáson a kúpok közös OC alkotója mentén, amelyek egyben osztókúpok is. A tengelyek által bezárt szög:

\[\Sigma = \delta_1 + \delta_2, \]

ahol: \(\delta_1 \) és \(\delta_2 \) az osztókúpszögek.

A fogsámvisszony illetve az áttétel a hengeres kerekekhez hasonlóan írható fel:

\[u = \frac{z_2}{z_1} = \frac{n_1}{n_2} = \frac{\omega_1}{\omega_2} = i \quad \text{(lassító áttétel esetén)} \]

A 8.24. ábrából a gördülőkör átmérők:

\[d_1 = 2 \cdot R_s \cdot \sin \delta_1 \]
\[d_2 = 2 \cdot R_s \cdot \sin \delta_2 \]

Így a fogsámvisszony tovább írható:
8. FOGAZATTÍPUSOK

\[
\begin{align*}
 u &= \frac{d_z}{d_1} = \frac{2 \cdot R_c \cdot \sin \delta_2}{2 \cdot R_c \cdot \sin \delta_1} = \frac{2 \cdot R_c \cdot \sin(\Sigma - \delta_1)}{2 \cdot R_c \cdot \sin \delta_1} = \frac{\sin \Sigma \cdot \cos \delta_1 - \cos \Sigma \cdot \sin \delta_1}{\sin \delta_1}.
\end{align*}
\]

Ha az egyenletet elosztjuk \(\cos \delta_1 \)-el és rendezzük, a következő összefüggést kapjuk tetszőleges tengelyszög esetén a kiskúpkerék osztókúpszögére:

\[
 \tan \delta_1 = \frac{\sin \Sigma}{u + \cos \Sigma}
\]

Leggyakrabban \(\Sigma = 90^\circ \)-os szögekben metsződő tengelyeket használunk. (A továbbiakban csak a merőleges tengelykialakításokkal foglalkozunk.) Ebben az esetben a következőképpen fejezhetjük ki az osztókúpszögöket:

\[
 \tan \delta_1 = \frac{1}{u}, \quad \tan \delta_2 = u
\]

A kúpkerék geometriai méreteit elemi és kompenzált fogazatra határozzuk meg.

Osztókörként megállapodás szerint a külső fogvégen lévő kört \(d \) értelmezzük. A modult úgy használjuk, mint hengereskerek etetén, így az osztókörátmérő:

\[
 d = m \cdot z.
\]

Ha az osztókúpon a kúp csúcsa felé haladunk definiálhatjuk a középső \(d_m \) és a belső osztókört \(d_i \) is. A 8.25. ábra alapján írhatjuk, hogy:

\[
 d = d_m + b \cdot \sin \delta,
\]

ahol: \(b \) a kúpalkotó hossza.

Ezekhez az átmérőkhöz tartozó osztókúp hosszúságokat rendre \(R_c \), \(R_m \), \(R_i \)-vel jelöljük, lásd 8.25. ábra.
8.25. ábra: A kúpkerekek jellemző méretei

Egyes esetekben használják az ún. középmodult \((m_m)\):

\[
d_m = m_m \cdot z = m \cdot z \cdot \frac{R_m}{R_e} \quad \Rightarrow \quad m_m = m \cdot \frac{R_m}{R_e}
\]

Az ábrán ill. a számításoknál változó fogmagasságú kúpkereket vettünk figyelembe, de mint láttuk, léteznek állandó fogmagasságú kerekek is.

8.26. ábra: A Tregold-féle közelítés elemi fogazatnál

Lassító áttétel esetén:

\[i = u = \frac{z_2}{z_1} = \frac{d_2}{d_1} = \frac{m \cdot z_2}{m \cdot z_1}. \]

A \(CP_2O \) háromszögből:

\[\frac{d_2}{2 \cdot R_i} = \sin \delta_2 \Rightarrow d_2 = 2 \cdot R_i \cdot \sin \delta_2, \]

hasonlóan a \(CP_1O \) háromszögből:

\[\frac{d_1}{2 \cdot R_i} = \sin \delta_1 \Rightarrow d_1 = 2 \cdot R_i \cdot \sin \delta_1, \]

az áttétel:

\[i = u = \frac{2 \cdot R_i \cdot \sin \delta_2}{2 \cdot R_i \cdot \sin \delta_1} = \frac{\sin \delta_2}{\sin \delta_1} = \frac{\sin \delta_2}{\cos \delta_2} = \tan \delta_2, \quad \text{ha} \ (\Sigma = 90^\circ), \]

tehát: \(i = u = \tan \delta_2. \)
8.4.2. Az elemi és a kompenzált kúpkerekek összefüggései

Elemi fogazat

Fejkörátmérőként a kúpfogaskerék legnagyobb átmérőjét értelmezzük:
\[
d_{a1} = d_1 + 2 \cdot m \cdot h_u^* \cdot \cos \delta_1, \quad d_{a2} = d_2 + 2 \cdot m \cdot h_u^* \cdot \cos \delta_2,
\]
a lábkörátmérök:
\[
d_{f1} = d_1 - (2 \cdot h_u^* + 2 \cdot c^*) \cdot m \cdot \cos \delta_1, \quad d_{f2} = d_2 - (2 \cdot h_u^* + 2 \cdot c^*) \cdot m \cdot \cos \delta_2,
\]
a fogfejszögek: \[
\tan \theta_u = \frac{h_u}{R_e} = \frac{m \cdot h_u^*}{R_e}
\]
a foglábszögek: \[
\tan \theta_f = \frac{h_f}{R_e} = \frac{m \cdot (h_u^* + c^*)}{R_e}.
\]

Kompenzált fogazat

Kompenzált fogazat \((x_2 = -x_1)\) gyártásakor módosulnak a fejkörátmérők, lábkörátmérők, fogfejszögek és foglábszögek értékei a következő módon:

a fejkörátmérők:
\[
d_{a1} = d_1 + 2 \cdot (m \cdot h_u^* + x_1 \cdot m) \cdot \cos \delta_1, \quad d_{a2} = d_2 + 2 \cdot (m \cdot h_u^* + x_2 \cdot m) \cdot \cos \delta_2,
\]
a lábkörátmérök:
\[
d_{f1} = d_1 - 2 \cdot (h_u^* + c^* - x_1) \cdot m \cdot \cos \delta_1, \quad d_{f2} = d_2 - 2 \cdot (h_u^* + c^* - x_2) \cdot m \cdot \cos \delta_2,
\]
a fogfejszögek:
\[
\tan \theta_{a1} = \frac{(h_u^* + x_1) \cdot m}{R_e}, \quad \tan \theta_{a2} = \frac{(h_u^* + x_2) \cdot m}{R_e}
\]
a foglábszögek:
\[
\tan \theta_{f1} = \frac{(h_u^* + c^* - x_1) \cdot m}{R_e}, \quad \tan \theta_{f2} = \frac{(h_u^* + c^* - x_2) \cdot m}{R_e}.
\]

8.4.3. A képzelt hengeres kerékpár, az alámetszés elkerülése kúpkerekeknel

A 8.26. ábra alsó részén látható, hogy a kúpkerekek kapcsolódási viszonyait egy képzelt hengeres kerékpárral helyettesíthetjük, amelynek a képzelt osztókörsugarai a \(CP_1O\) ill. a \(CP_2O\) háromszögekből:
\[
r_{v1} = \frac{r_1}{\cos \delta_1}, \quad r_{v2} = \frac{r_2}{\cos \delta_2},
\]
\[
a_v = r_{v1} + r_{v2}.
\]
Mivel a fogsámok az osztókórsugarakkal arányosak a képzelt fogsámok kifejezhetők:

\[
\begin{align*}
 z_{v1} &= \frac{z_1}{\cos\delta_1}, \\
 z_{v2} &= \frac{z_2}{\cos\delta_2}, \\
 \Sigma z_v &= z_{v1} + z_{v2}
\end{align*}
\]

a képzelt fogsámviszony (derékszögű hajtás esetén \(\Sigma = 90^\circ\)):

\[
 u_v = \frac{z_{v2}}{z_{v1}} = u \cdot \frac{\cos\delta_1}{\cos\delta_2} = u \cdot \frac{\sin\delta_1}{\cos\delta_2} = u \cdot \tan\delta_2 = u^z.
\]

Alámetszés akkor következik be, ha

\[
 z_v < z_{\text{lim}} = \frac{2 \cdot (h^*_w - x)}{\sin^2\alpha},
\]

figyelembe véve, hogy:

\[
 z_v = \frac{z}{\cos\delta} \quad z < z_{\text{lim}} \cdot \cos\delta = \frac{2 \cdot (h^*_w - x) \cdot \cos\delta}{\sin^2\alpha}.
\]

Ebből átrendezve meghatározható a minimális profileltolástényező:

\[
 x > x_{\text{lim}} = h^*_w - \frac{z \cdot \sin^2\alpha}{2 \cdot \cos\delta}.
\]

Ha a két kerék képzelt fogsámát összeadjuk:

\[
 \sum z_v = z_{v1} + z_{v2} = \frac{2 \cdot (h^*_w - x_1)}{\sin^2\alpha} + \frac{2 \cdot (h^*_w + x_1)}{\sin^2\alpha} = \frac{4 \cdot h^*_w}{\sin^2\alpha},
\]

a kompenzálás \(x_2 = -x_1\) behelyettesítésével.

Ez a kompenzálhatóság határa a profilmódotástól függetlenül. Szokásos esetben, ha \(h^*_w = 1\) és \(\alpha = 20^\circ\) akkor nem kerülhető el az alámetszés, ha: \(\sum z_v < 34\). Tehát a minimális képzelt fogsám összeg 34.

8.4.4. A síkkerék

Egy kúpfogaskerék síkkeréke egy vele hézamentes kapcsolódást megvalósító \(\delta_p = 90^\circ\) osztókör félkúpszögű kúpfogaskerék. A síkkerék fogoldala olyan sima vonalfelület, melyeknek a síkkerék tengelyével állandó \(\alpha\) szöget bezáró egyenes alkotói vannak a síkkerék osztósíkjában futó vezérgörbéje minden pontján át a vezérgörbe normásíkjában. Egyenes fogú kúpperék esetén a vezérgörbe e síkkerék tengelyvonalába befutó sugár: ekkor a síkkerék fogoldala sík. (Hasonlóan a Maag-fogasléc fogoldalához. A síkkerék képzelt fogszáma úgy szintén végte- len.)
A 8.27. a ábra baloldalán a síkkerék látható.

![Diagram](image)

a) A síkkerék értelmezése

b) A síkkerék és a kúpkerekek kapcsolódása

8.27. ábra: A síkkerék értelmezése és kapcsolódása

Egymással érintkező kúpkerékpárokokhoz olyan síkkerék rendelhető, amely mindkét kúpkerékkal helyesen kapcsolódik, 8.27. b ábra.

A síkkerék osztókörösugara:

\[R_e = \frac{r_1}{\sin \delta_1} = \frac{r_2}{\sin \delta_2} . \]

Ha \(\sum = \delta_1 + \delta_2 = 90^\circ \), akkor: \(R_e = \sqrt{r_1^2 + r_2^2} \).

A síkkerék \(z \), fogsáma a síkkerék osztókör kerületéből és az osztóköri fogosztásból számítható ki. Sőt a sugár arányok az egyes kúpkerekeken az osztókúpszögek színuszával is. (Lásd a 8.24. ábrát.)

\[z_c = \frac{R_e \cdot 2\pi}{m \cdot \pi} = \frac{2R_c}{z} \cdot \frac{\sin \delta_1}{\sin \delta_2} = \frac{R_f}{d} = \frac{R}{r} = \frac{1}{\sin \delta_1} + \frac{2}{\sin \delta_2} \]

Mivel az osztókörátmérők a fogszámokkal arányosak, a síkkerék fogsáma számítható a következőképpen is: \(z_c = \sqrt{z_1^2 + z_2^2} \), ha \(\Sigma = 90^\circ \).

A síkkerekeknél a kúpfogazatok gyártása szempontjából van nagy jelentősége!

8.4.5. Ferde és ívelt fogú kúpkerekek

A ferde és ívelt fogú kúpkerekek ugyanolyan előnyös tulajdonságokkal rendelkeznek, mint ahogy láttuk a hengeres kerekek esetében. (A gyakorlatban ferde fogú kúpkereket alig alkalmaznak.)

Ferde fogú kúpkerekek esetén a fogirányvonallal színvonalon kívül, evolvens és ciklois lehet. A továbbiakban néhány ívelt fogú kúpkerek-pár típus legjellemzőbb tulajdonságait ismertetjük:

- Gleason (körív) fogazat:
 - fogirányvonala körív,
 - a megmunkálás lefejtőjelzéssel foganként történik,
 - a fogprofilok kismértékben eltérnek az evolvenstől,
- a fog magassága a foghossz mentén állandó,
- ha a késejet úgy állítják be, hogy a foghajlásszöge a fogközepén zérus lesz, zerol fogazatot kapunk.

- **Palloid (Klingelnberg-féle) fogazat:**
 - kúpos lefejtőmaróval gyártják, ezért a fogprofil evolvens,
 - a fogirányvonalra hurkolt evolvens,
 - a fog magassága a foghossz mentén állandó nagyságú.

- **Oerlikon (ciklois ívű) fogazat:**
 - a fogirányvonal hurkolt epiciklois,
 - szerszáma késfej, a betétkések több bekezdésben, több spirális mentén helyezkednek el,
 - a fogazás során három folytonos forgás valósul meg,
 - a lefejtőeljárás miatt a fogprofil evolvens,
 - a fog magassága a foghossz mentén állandó.

8.4.6. Hiperbolikus (hipoid) fogaskerekek tulajdonságai:
- kitérő tengelyek esetén használják,
- a fogazat forgási hiperboloid felületen helyezkedik el,
- a kiskerék méretei növelhetők ugyanazon áttétel mellett,
- két oldalról csapágyazható,
- nagy kapcsolószám,
- foghossz menti csúszás is van, az eredő csúszás körülbelül állandó (zajtalanabb járást eredményez),
- kisebb hatásfok.

8.5. Csigahajtás
Két kitérő tengely közötti (általában a tengelykitérés szöge 90°) mozgás és teljesítmény átvitelre csigahajtópárokat alkalmazunk, amelyekkel egy fokozatban (lépcsőben), viszonylag kis méretekkel is nagy áttételű \(i_{\text{max}} \approx 100 \) nyomatékvitelt valósítható meg. A csigahajtás csigából és csigakerékből áll. A kiskeréknek megfelelő csiga menetes orsóhoz (a hengeres csiga készülhet egy vagy több bekezdéssel is), a nagykeréknek megfelelő csigakerék pedig férde fogazatú fogaskerékhez hasonlítható. A csiga forgatásakor a menetemelkedésének megfelelően a csigakerék fogait mozgásba hozza, és így a csigakerék forogni kezd. A **8.28. ábra** a leggyakrabban előforduló csiga-csigakerék kapcsolódásokat mutatja, a) henger-henger; b) henger-globoid; c) globoid-globoid hajtás.
A csiga fogfelületének kiképzése szerint a hengeres és globoid csigatípusokat a következőképpen lehet csoportosítani:

- **Lineáris csiga**, amelynek a fogfelületeit egyenes alakotónak a csiga tengelyvonala körüli forgatása és egyidejű tengelyirányú haladó mozgása képezi le:
 - Archimedeszi csiga (ZA jelű),
 - Evolvens csiga (ZI jelű),
 - Hernyős konvolút csiga (ZN1 jelű),
 - Árkos konvolút csiga (ZN2 jelű).

- **ZK típusú csiga**, amelynek a fogfelületeit kúpos felületű szerszám képezi le:
 - Egykúpos csiga (ZK 1 jelű),
 - Kétkúpos csiga (ZK 2 jelű).

- **ZT típusú csiga**, amelynek a fogfelületeit körív vagy körgyűrűfelület képezi le:
 - Ívelt profilú hengeres csigák (ZTA, ZTN1, ZTN2 és ZTK jelű).

- **Globoid csigák**:
 - Globoid csigák egyenes alkatóval (GA és G2KF jelű),
 - Ívelt profilú globoid csigák (GTA és G2TF jelű).

8.5.1. A csigahajtás geometriai viszonyai

A **8.29. ábra** alapján vizsgálhatjuk meg a csigahajtás geometriai viszonyait.
8.29. ábra: A hengeres csiga és csigakerék kapcsolódása

A hajtás áttétele:

\[i = u = \frac{n_1}{n_2} = \frac{T_2}{T_1} = \frac{z_2}{z_1}, \]

ahol: az 1-es index a csigára, a 2-es index a csigakerékre vonatkozik. (\(i_{\text{min}} = 5 \) és \(i_{\text{max}} = 50...60 \)), megjegyzés: lassító hajtás esetén nagyobb is lehet. \(z_1 \) a csiga bekezdéseinek számát jelenti.

A csigahajtás geometriai áttétele nem egyezik meg a fogsámvizsönygel!

\[i = \frac{z_2}{z_1} \neq \frac{d_2}{d_1}! \]

A hengeres **csiga** paraméterei:

az axiális osztás:

\[p_x = m \cdot \pi, \]

a több bekezdéssel (\(z_1 \)) készülő csigánál az osztás:

\[p_z = z_1 \cdot p_x = z_1 \cdot m \cdot \pi, \]

a normál metszetben az osztás:

\[p_n = m_n \cdot \pi, \]

ahol: \(m_n \) a normál modul.

A normál osztás és normál modul kifejezhető az axiális osztással ill. modullal:

\[p_n = p_x \cdot \cos \gamma \quad \text{és} \quad m_n = m \cdot \cos \gamma, \]

ahol: \(\gamma \) a csiga menetemelkedési szögének értelmezését a **8.29. ábra** jobb oldalán látható.
A csigára egy speciális fogalmat vezettek be, az átmérőhányadost (q):

$$q = \frac{d_1}{m}, \quad 5 \leq q < 17,$$

tehát az osztókör átmérő: $d_1 = m \cdot q$.

Így a csiga menetemelkedési szöge a következő alakban írható fel:

$$\tan \gamma = \frac{p_2}{d_1 \cdot \pi} = \frac{z_1 \cdot p_x}{m \cdot q \cdot \pi} = \frac{z_1 \cdot m \cdot \pi}{m \cdot q \cdot \pi} = \frac{z_1}{q}.$$

A csiga további méreteit elemi fogazásra vezetjük le (a csigánál egyáltalán nem alkalmaznák profileltolást).

a fejkörátmérő: $d_{a1} = m \cdot (q + 2)$,

a lábkörátmérő: $d_{f1} = m \cdot (q - 2 - 2 \cdot c^*) = m \cdot (q - 2,4)$, $c^* = 0,2$,

a csiga menetes szakaszának hossza: $b_1 \geq 2 \cdot m \cdot \sqrt{z_2 + 1}$.

A csigakerék méretei a fogaskerekek mintájára fejezhetők ki:

az osztás: $p_2 = \frac{d_2 \cdot \pi}{z_2}$

a kapcsolódás feltétele: $p_2 = \frac{d_2 \cdot \pi}{z_2} = p_x = m \cdot \pi$

az osztókörátmérő: $d_2 = m \cdot z_2$.

Elemi fogazat esetén a fejkör, a lábkör és a csigakerék külső körének mérete:

a fejkörátmérő: $d_{a2} = m \cdot (z_2 + 2)$,

a lábkörátmérő: $d_{f2} = m \cdot (z_2 - 2 - 2 \cdot c^*) = m \cdot (z_2 - 2,4)$,

a külső kör átmérője: $d_{e2} = d_{a2} + m = m \cdot z_2 + 3 \cdot m$.

Egyéb méretek:

a csigakerék fogszélessége: $b_2 = 0,45 \cdot (q + 6) \cdot m$,

az elemi tengelytáv: $a = \frac{d_1 + d_2}{2} = m \cdot \frac{(q + z_2)}{2}$.

Abban az esetben, ha x_2 profileltolást alkalmazunk a csigakerékken az összefüggések a következő péppen módosulnak:

a fejkörátmérő:

$$d_{a2} = m \cdot (z_2 + 2 + 2 \cdot x_2),$$

a lábkörátmérő:

$$d_{f2} = m \cdot (z_2 - 2 - 2 \cdot c^* + 2 \cdot x_2) = m \cdot (z_2 - 2,4 + 2x_2),$$
a tengelytávolság változása:

\[a_w = a + x_z \cdot m = \left(\frac{q + z_2}{2} + x_2 \right) \cdot m. \]

8.5.2. A csigahajtás hatásfoka

A csigahajtás hatásfoka, mint általában a hatásfok, a hasznos és bevezetett teljesítmény hányadosa. Abban az esetben, ha a csiga hajtja a csigakereket, a következő írható a hatásfokra:

\[
\eta_1 = \frac{P_2}{P_1} = \frac{T_2 \cdot \omega_2}{T_1 \cdot \omega_1} = \frac{F_2 \cdot v_2}{F_1 \cdot v_1},
\]

ahol: az 1-es index a csigára, a 2-es index a csigakerékre vonatkozik,

\(v_1, v_2 \) - kerületi sebességek.

Az összefüggésből látható ahhoz, hogy meg tudjuk határozni a hatásfokot, meg kell vizsgálni a csiga és csigakerék érintkezési pontjában a sebességi viszonyokat és az erőhatásokat. A 8.30. ábrán a csiga sebességi viszonyait tüntettük fel.

![8.30. ábra: A csiga sebességi viszonyai](image)

Jelölések:

- \(v_{t1}, v_{t2} \) - érintőirányú sebességkomponensek,
- \(v_n \) - érintősíkról merőleges sebességkomponens,
- \(v_s \) - csúszási sebesség.

A \(v_n \) érintősíkról merőleges sebességkomponens a csigán, ill. a csigakeréken megegyezik egymással, ezért írható a derékszögű háromszögek felhasználásával, hogy:
\[v_n = v_1 \cdot \sin \gamma = v_2 \cdot \cos \gamma \quad \Rightarrow \quad v_2 = v_1 \cdot \frac{\sin \gamma}{\cos \gamma} = v_1 \cdot \tan \gamma. \]

A 8.31. ábrán az erőhatások láthatóak az érintkezési pontban.

8.31. ábra: Az erőhatások csigahajtásnál

Jelölések:
- \(F_1, F_2 \) - kerületi erők,
- \(F_r \) - radiális irányú erő,
- \(F_n \) - normálfogerő,
- \(F'_{n} \) - erőkomponens a csiga gördülőhengerének érintősíkjában,
- \(F''_{n} \) - erőkomponens a csiga tengelysíkjában,
- \(\rho \) = arctg \(\mu \) a súrlódási félkúpszög. (\(\mu = \tan \rho \) a fogsúrlódási tényező)

A 8.31. ábrából a normálfogerő meghatározható:

\[F_n = \sqrt{F_1^2 + F_2^2 + F_r^2}, \]

ahol: \(F_i = F_2 \cdot \tan \alpha_x \) , az \(\alpha_x \) értelmezése az ábrából leolvasható.

A két kerületi erő közötti összefüggés:

\[F_1 = F_2 \cdot \tan (\gamma + \rho) , \]

a hatásfok:
\[\eta_i = \frac{F_2 \cdot v_2}{F_1 \cdot v_1} = \frac{F_2 \cdot v_1 \cdot \tan \gamma}{F_2 \cdot \tan (\gamma + \rho) \cdot v_1} = \frac{\tan \gamma}{\tan (\gamma + \rho)} = \frac{1 - \mu' \cdot \tan \gamma}{1 + \mu' \cdot \cot \gamma} \]

a levezetés mellőzésével: \[\eta_i = \frac{z_i}{q \cdot z_i + q' \cdot \mu'} \]
adódik.

ahol: \(\mu' \) a látszólagos súrlódási tényező,
\(\rho' > \gamma \) esetén a hajtás önzáró.

A hatásfok változását láthatjuk a **8.32. ábrán** a menetemelkedési szög függvényében különböző fogsúrlódási tényezők \((\mu') \) esetében. A görbék kezdetben meredeken emelkednek, majd lassú emelkedéssel közel állandó értéket vesznek fél. A legnagyobb hatásfok értékeket \((\eta_{1\text{max}}) \) ponttal jelöltük. Megfigyelhetjük, hogy a maximális hatásfokokhoz nagy menetemelkedési szögek tartoznak, amit gyártási nehézségek miatt nem nagyon használnak. De azt is leolvashatjuk a diagramból, hogy kis súrlódási tényezőnél és 15…25°-os menetemelkedési szögnél is jó hatásfok adódik már (75…90%).

![8.32. ábra: A menetemelkedési szög és hatásfok közötti kapcsolat](image)

Abban az esetben, ha a csigakerék hajtja a csigát (ez csak akkor lehetséges, ha a hajtás nem önzáró) a hatásfok a következő lesz:

\[\eta_2 = \frac{P_1}{P_2} = \frac{P_2 \cdot v_1}{F_2 \cdot v_2} = \frac{F_2 \cdot v_1 \cdot \tan (\gamma - \rho')}{F_2 \cdot \tan \gamma} = \frac{\tan (\gamma - \rho')}{\tan \gamma} \]

a levezetés mellőzésével: \[\eta_2 = \frac{z_i - q' \cdot \mu'}{q \cdot z_i + q' \cdot \mu'} \]
adódik.

Ebben az üzemmódban, ha a hajtás önzáró lenne \((\gamma \leq \rho') \) \(P_i=0 \) miatt, a csigakerék nem tudja forgatni a csigát.
A csigahajtás összhatásfokának számolásakor figyelembe kell venni a teljesítményveszteségeket is. Így a hatásfok összefüggését a következő alakban írhatjuk fel:

$$\eta = \frac{P_v}{P_2 + P_v},$$

ahol P_v a csigahajtómű összvesztesége:

$$P_v = P_{vz} + P_{volaj} + P_{vcs},$$

ahol: P_{vz} - a fogsúrlódási teljesítményveszteség,
P_{volaj} - az olajkavarásból származó veszteség,
P_{vcs} - a csapágysúrlódás miatti teljesítményveszteség.
9. A FOGASKEREKEK SZILÁRDSÁGI MÉRETEZÉSE, GYÁRTÁSA ÉS MÉRÉSE

9.1. A fogaskerekek szilárdsági méretezése

9.1.1. A fogaskerekekre ható erők

A fogaskerekek igénybevételein alapuló méretezési számítások az átviendő névleges teljesítményből \((P)\) ill. a bemenő \((n_1)\) vagy kimenő \((n_2)\) fordulatszámából indulnak ki. Tehát a mechanikai igény-bevételt létrehozó csavaronyomaték a bemenő tengelyen \((T_1)\) és a kimenő tengelyen \((T_2)\):

\[
T_1 = \frac{P}{\omega_1} = \frac{P}{2 \cdot \pi \cdot n_1} \quad \text{és} \quad T_2 = \frac{P}{\omega_2} = \frac{P}{2 \cdot \pi \cdot n_2}.
\]

A valóságban a fogaskerekek érintkezési pontjában a fogfelületekre merőlegesen (a kapcsolóvonal irányában) adódik át a terhelés. Az erőhatások vizsgálatakor azonban úgy tekintjük, hogy a kerekek közti erőhatás, a normálfogerő \((F_n)\), a gördülőkör mentén működik.

Erőhatások egyenes fogazatnál

Egyenes fogazatú hengeres fogaskerekekknél az erőviszonyokat a 9.1. a ábra mutatja.

![Diagram](image)

a) egyenes fogazat erőhatásai
b) ferde fogazat erőhatásai

9.1. ábra: Hengeres kerekek erőhatásai

A normálfogerő \((F_n)\) két komponense az \(F\) kerületi erő és az \(F_r\) radiális irányú erő. A gördülőkörökre számított kerületi erő:

\[
F = \frac{T_1}{r_{w1}} = \frac{T_2}{r_{w2}}.
\]
a vektorháromszögöből a normálfogerő: \[F_n = \frac{F}{\cos \alpha_w}, \]
a radiális irányú erő: \[F_r = F \cdot \tan \alpha_w. \]

Erőhatások ferde fogazatú fogaskeréknél

Az \(F_n \) terhelést koncentrált erőnek feltételezzük, amely a normálsíkban működik. Ez egy térbeli erő-rendszer határoz meg. Tehát a normálfogerőnek így három komponense van: \(F \) kerületi erő, amely a gördülőkör kerületén hat, az \(F_r \) radiális irányú erő, ami a tengelyre merőleges, valamint \(F_{ax} \) axiális irányú erő, amely a tengely irányába hat.

A 9.1. b ábra alapján a homlokfogerő:
\[F_t = \frac{F}{\cos \alpha_{wt}}, \]
íg a normálfogerő:
\[F_n = \frac{F_t}{\cos \beta_b} = \frac{F}{\cos \alpha_{wt} \cdot \cos \beta_b}, \]
a tengely és a csapágyak méretezéséhez szükséges erők:
\[F_r = F \cdot \tan \alpha_{wt}, \quad F_{ax} = F \cdot \tan \beta. \]

Az erőösszetevők ismeretében az \(F_n \) normálfogerő felírható a következő alakban is:
\[F_n = \sqrt{F_r^2 + F_{ax}^2 + F_{ax}^2}. \]

Kúpfogaskerekek erőhatásai

Kúpkereknél azt tételezzük fel, hogy a foghossz közepén (9.2. ábra n-n metszet) \(r_m \) közepes osztókörsugáron koncentráltan hat az \((F_n) \) normálfogerő.

www.tankonyvtar.hu © Balogh Tibor, SZE
Az n-n metszet vektorháromszöge alapján a normálfogerő:

\[F_n = \frac{F}{\cos \alpha}, \]

a normálfogerő összetevője az n-n metszetből: \[F_n' = F \cdot \tan \alpha, \]

az osztókúpalkotókra merőleges irányú \[F_{ax} \]

két komponensre bontható: a tengelyirányú \[F_{ax} \]

és a tengelyre merőleges \[F_r \]

erőkre. Ezek az erők a tengely és a csapágyak méretezése szempontjából fontosak:

\[F_{ax} = F_n' \cdot \sin \delta = F \cdot \tan \alpha \cdot \sin \delta, \]

\[F_r = F_n' \cdot \cos \delta = F \cdot \tan \alpha \cdot \cos \delta. \]

9.1.2. A fogazat károsodási, tönkremeneteli formái

A fogkapcsolódás folyamata során az előzőekben ismertetett erőhatások nagysága, iránya és támadáspontja is változik, vagyis nem statikus igénybevétel lép fel. Egy fog terhelése egy körülfordulás alatt a nulláról egy maximális értékre nő, majd újra nullára csökken, tehát lüktető váltakozó az igénybevétel. A fogakon fellépő felületi nyomás a fogfelület kifáradását okozhatja. Míg fogra ható hajlító és nyíró igénybevétel fogtő kifáradást eredményezhet. Ezenkívül az érintkező fogfelületek csúsznak egymáson, ami súrlódással, kopással jár, aminek berágódás lehet a következménye. A fogfelület főbb károsodási formái a következők:

a.) Fogtörés.
- A fog teljes hosszában a hajlító igénybevétel hatására a fog töben eltörhet, ami lehet fáradásos törés vagy hirtelen túlterhelés következménye.

b.) Fogoldal kifáradás (pitting).
- Az érintkezési hely környezetében fellépő nagy lüktető nyomóigénybevétel hatására a fogfelület kigödrösödése.

c.) Kopások.
- Az erőhatás alatti csúszás kopással jár, ami káros lehet a fogfelület alakváltozása miatt. A káros hatás föleg akkor jelentkezik, ha nem jól a kenés vagy szennyeződés kerül a felületek közé.
d.) Berágódás.
- A súrlódás felületi hőhatást okoz, melynek következtében a felület túlmelegedhet. Ez nagy felületi terheléssel és elégtelen kenéssel párosulva a fogfelületről anyagdarabok le-szakadását eredményezheti.

e.) Egyéb felületi sérülések:
- anyaghiba miatti repedések,
- hőkezelési repedések,
- megmunkálások (köszörülés) okozta repedések.

9.1.3. A fogaskerekek anyagai

A 9.1 és 9.2 táblázatban az MSZ, MSZ ISO, MSZ EN és DIN anyagszabványoknak megfelelő megnevezéseket és jelöléseket találhatjuk meg. A táblázat tartalmazza az anyagminőséghez tartozó szilárdsági adatokat is, mint szaktísi szilárdság, folyáshatár, fogyókifáradási határfeszültség, fogfelület palástnyomás kifáradás és határ Hertz feszültség.
<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>Szabvány</th>
<th>Rövid jel</th>
<th>Szak. szil. R_{m0} [N/mm²]</th>
<th>Folyáshatár R_{eH} v $R_{p0,2}$ [N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemezgrafitos öntöttvasak</td>
<td>MSZ ISO 185</td>
<td>GG-200</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GG-250</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>Fekete temperöntvények</td>
<td>MSZ ISO 5922</td>
<td>GTS-350</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GTS-650</td>
<td>650</td>
<td>420</td>
</tr>
<tr>
<td>Gömbgrafitos öntöttvasak</td>
<td>MSZ 8277</td>
<td>GGG-400</td>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GGG-600</td>
<td>600</td>
<td>380</td>
</tr>
<tr>
<td>Ötvözetlen acélöntvények</td>
<td>MSZ 8276</td>
<td>GS-52</td>
<td>510</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GS-60</td>
<td>590</td>
<td>295</td>
</tr>
<tr>
<td>Ötvözetlen szerkezeti acélok</td>
<td>MSZ EN 10025</td>
<td>S 235 JR</td>
<td>340-470</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S 275 JR</td>
<td>410-560</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E 295</td>
<td>490</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E 335</td>
<td>590</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E 360</td>
<td>690</td>
<td>-</td>
</tr>
<tr>
<td>Nemesíthető szerkezeti acélok</td>
<td>MSZ EN 10083</td>
<td>C25E</td>
<td>500-650</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C35E</td>
<td>600-750</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C45E</td>
<td>650-800</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C60E</td>
<td>800-950</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34CrMo4</td>
<td>900-1100</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42CrMo4</td>
<td>1000-1200</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34CrNiMo6</td>
<td>1100-1300</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30CrNiMo8</td>
<td>1250-1450</td>
<td>1050</td>
</tr>
<tr>
<td>Acél láng- és ind. edzéshez</td>
<td>DIN 17212</td>
<td>41CrMo4</td>
<td>1080-1270</td>
<td>880</td>
</tr>
<tr>
<td>Nitridálható acél</td>
<td>DIN 17211</td>
<td>31CrMoV9</td>
<td>1000-1200</td>
<td>800</td>
</tr>
<tr>
<td>Betétben edzhető acélok</td>
<td>MSZ EN 10083</td>
<td>C10E</td>
<td>490-630</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C15E</td>
<td>590-780</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16MnCr5</td>
<td>780-1080</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15CrNi6</td>
<td>880-1180</td>
<td>635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17CrNiMo6</td>
<td>1080-1320</td>
<td>785</td>
</tr>
</tbody>
</table>

9.1. táblázat: A fogaskerékanyagok táblázatos összefoglalása 1
FOGASKERÉKANYAGOK SZILÁRDSÁGI ADATAI (2)

<table>
<thead>
<tr>
<th>Rövid jel</th>
<th>Fogtőkifáradási határélesszerűség $f_{	ext{lim}}$, [N/mm2]</th>
<th>Fogfelület palástnyomás kifáradás $f_{	ext{lim}}$, [N/mm2]</th>
<th>Határ Hertz feszültség σ_{Hmax}, [N/mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG-200</td>
<td>40</td>
<td>1.24</td>
<td>300</td>
</tr>
<tr>
<td>GG-250</td>
<td>55</td>
<td>1.51</td>
<td>330</td>
</tr>
<tr>
<td>GTS-350</td>
<td>130</td>
<td>1.69</td>
<td>350</td>
</tr>
<tr>
<td>GTS-650</td>
<td>155</td>
<td>2.68</td>
<td>440</td>
</tr>
<tr>
<td>GGG-400</td>
<td>140-190</td>
<td>2.11-3.06</td>
<td>390-470</td>
</tr>
<tr>
<td>GGG-600</td>
<td>165-220</td>
<td>3.33-4.5</td>
<td>490-570</td>
</tr>
<tr>
<td>GS-52</td>
<td>110</td>
<td>1.08</td>
<td>280</td>
</tr>
<tr>
<td>GS-60</td>
<td>120</td>
<td>1.33</td>
<td>310</td>
</tr>
<tr>
<td>S 235 JR</td>
<td>125</td>
<td>1.36</td>
<td>320</td>
</tr>
<tr>
<td>S 275 JR</td>
<td>135</td>
<td>1.63</td>
<td>350</td>
</tr>
<tr>
<td>E 295</td>
<td>140</td>
<td>1.73</td>
<td>360</td>
</tr>
<tr>
<td>E 335</td>
<td>150</td>
<td>1.92</td>
<td>380</td>
</tr>
<tr>
<td>E 360</td>
<td>200</td>
<td>2.7</td>
<td>450</td>
</tr>
<tr>
<td>C25E</td>
<td>200</td>
<td>1.97</td>
<td>385</td>
</tr>
<tr>
<td>C35E</td>
<td>225</td>
<td>2.52</td>
<td>435</td>
</tr>
<tr>
<td>C45E</td>
<td>250</td>
<td>3.2</td>
<td>490</td>
</tr>
<tr>
<td>C60E</td>
<td>280</td>
<td>4.49</td>
<td>580</td>
</tr>
<tr>
<td>34CrMo4</td>
<td>220-290</td>
<td>5.29-6.73</td>
<td>630-710</td>
</tr>
<tr>
<td>42CrMo4</td>
<td>225-310</td>
<td>6.17-7.71</td>
<td>680-760</td>
</tr>
<tr>
<td>34CrNiMo6</td>
<td>225-315</td>
<td>6.17-7.91</td>
<td>680-770</td>
</tr>
<tr>
<td>30CrNiMo8</td>
<td>230-320</td>
<td>6.54-8.12</td>
<td>700-780</td>
</tr>
<tr>
<td>41CrMo4</td>
<td>250-370</td>
<td>13.35-20.19</td>
<td>1000-1230</td>
</tr>
<tr>
<td>31CrMoV9</td>
<td>280-420</td>
<td>16.74-20.86</td>
<td>1120-1250</td>
</tr>
<tr>
<td>C10E</td>
<td>225</td>
<td>13.35-16.15</td>
<td>1000-1100</td>
</tr>
<tr>
<td>C15E</td>
<td>245</td>
<td>13.35-16.15</td>
<td>1000-1100</td>
</tr>
<tr>
<td>16MnCr5</td>
<td>310-500</td>
<td>22.56-30.04</td>
<td>1300-1500</td>
</tr>
<tr>
<td>15CrNi6</td>
<td>310-500</td>
<td>22.56-30.04</td>
<td>1300-1500</td>
</tr>
<tr>
<td>17CrNiMo6</td>
<td>310-500</td>
<td>22.56-30.04</td>
<td>1300-1500</td>
</tr>
</tbody>
</table>

9.2. táblázat: A fogaskerékanyagok táblázatos összefoglalása 2

9.1.4. A fogaskerekek szilárdsági ellenőrzése

A kidolgozott méretezési eljárások szerint a fogaskerekeket fogfelületi teherbírásra (fogfelületi nyomó igénybevételre), fogtőigénybevételre és berágódásra ellenőrzik. A 9.3. ábrán egy fogaskerékpár meghibásodási határait mutatja. A feltüntetett görbék a kerületi sebesség függvényében azt a terhelést adják meg, amelynél a fogaskerekek valamilyen ok miatt károsodnak, tönkrekennek. A fogaskerekek szilárdsági ellenőrzését a nemzetközi ISO szabványnak megfelelő méretezési javaslat alapján tárgyaljuk röviden a főbb tényezők figyelembevételével.
9.3. ábra: A fogaskerekek meghibásodási határai

Méretezés felületi teherbírásra (nyomásra)

Egy fogaskerékpár összenyomódásakor a fogfelületi teherbírás az a terhelés, amelynél az érintkező fogfelületek nem gödrösödnék ki, nem képződik ún. pitting.

A felületi nyomásra történő méretezés a Hertz elméleten alapszik. Ha két hengeres felületű (ρ_1 és ρ_2 görbületi sugarú, valamint E_1 és E_2 rugalmassági modulusú) testet F_n erővel egymáshoz nyomunk, akkor a 9.4. ábra szerinti feszültségeloszlás (σ_H) jön létre az érintkezés környezetében.

9.4. ábra: A fogakat terhelő érintkezési Hertz-feszültség

A feszültség maximumát a következő összefüggésből kapjuk:

$$\sigma_{H_{\text{max}}} = \frac{F_n}{\pi \cdot l_z \left[\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2} \right]^{\frac{1}{2}}},$$

ahol: F_n - az érintkezésben ható normális irányú erő (valós kapcsolódásban a normálfogerő),

l_z - az érintkezésben lévő alkoktó összes hossza, (fogaskerekeknél a közös fogszélesség b),

ρ_1 és ρ_2 - az érintkező felületek görbületi sugara,

E_1 és E_2 - az érintkező anyagok rugalmassági modulusa,
\(v_1 \) és \(v_2 \) az érintkező anyagokra jellemző Poisson-szám.

Ha az előző egyenletet fogaskerekre alkalmazzuk, figyelembe kell venni, hogy a méretelezés során a C főpontban történő érintkezést vizsgáljuk. Így a geometriai viszonyok alapján, a levezetés mellőzésével, a főponti Hertz feszültségre a következő összefüggést kapjuk:

\[
\sigma_{HC} = \frac{2000 \cdot T_1 \cdot \frac{u + 1}{u} \cdot Z_H \cdot Z_E \cdot Z_\varepsilon \cdot Z_\beta \cdot Z_B}{b \cdot d_1^2}
\]

ahol: \(T_1 \) – a csavarónyomaték a bemenő tengelyen,
\(b \) - a közös fogszélesség,
\(d_1 \) – a kiskerék osztókörátmérő,
\(u \) – a fogszámviszony,
\(Z_H \) - a fogerők helyzetét figyelembevevő gördülőkori tényező (általában: 2,5),

\[
Z_H = \frac{2}{\sqrt{\cos^2 \alpha \cdot \tan \alpha_w}}
\]

\(Z_E \) – az anyagsajátosságot kifejező rugalmassági tényező,

\[
Z_E = \frac{1}{\sqrt{\pi \cdot \left(\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2} \right)}}
\]

\(Z_\varepsilon \) – a kapcsolószám tényező,

egyenes fogazatnál: \(Z_\varepsilon = \sqrt{\frac{4 - \varepsilon_\alpha}{3}} \),

ferde fogazatnál: \(Z_\varepsilon = \sqrt{\frac{4 - \varepsilon_\alpha}{3} \cdot 1 - \frac{\varepsilon_\beta}{\varepsilon_\alpha}} \),

\(Z_\beta \) – a fogferdeséget figyelembevevő tényező,

\[
Z_\beta = \sqrt{\cos \beta}
\]

\(Z_B \) – kis fogszámok esetén a görbületi sugarakat célszerű a C főpontjából az egyedi kapcsolódás határára a B pontba átszámítani,

\[
Z_B = \sqrt{\frac{\rho_{1C} \cdot \rho_{2C}}{\rho_{1B} \cdot \rho_{2B}}}
\]
A névleges Hertz-feszültség számításánál a terhelést állandónak feltételeztük és nem vettük figyelembe a környezeti hatásokat (a beépítési, üzemeltetési és pontossági sajátosságokat). Ha az egyes befolyásoló tényezőkkel módosítjuk a névleges érintkezési feszültség értékét, akkor megkapjuk a tényleges feszültséget:

$$\sigma_H = Z_H \cdot Z_E \cdot Z_{\beta} \cdot Z_B \cdot \sqrt{\frac{2000 \cdot T_i}{b \cdot d_i^2}} \cdot \frac{u+1}{u} \cdot \sqrt{K_A \cdot K_v \cdot K_{H\beta} \cdot K_{Ha}}$$

ahol: K_A - üzemtényező, az üzemeltetés körülményeit (a hajtó- és hajtott gép jellegét, a dinamikai jellegből adódó túlterhelések hatását) figyelembe vevő tényleg, nagysága $K_A = 1-2,25$ között változik,

K_v – belső dinamikus tényleg, amely figyelembe veszi a gyártási pontosságot, a járás egyenlőséget, a belső dinamikus hatásokat, általában $K_v = 1,6$,

$K_{H\beta}$ – a fogszélesség menti terheléselsőság egyenlőségét figyelembe vevő tényleg, a terheléselsőság a fogirányhiba, a tengelypárhuzamossági hiba és a fog deformációjának a következményeként nem lesz egyenletes,

K_{Ha} – a homlok-terheléselsőság tényleg, lényegében az egy és két fogpárkapcsolódás váltást veszi figyelembe.

A fogaskerék fogfelülete kifáradással (gödrösödéssel) szemben biztonságosnak mondható, ha a tényleges érintkezési Hertz-feszültség (σ_H) kisebb-egyenlő a fogaskerék anyagára jellemző fogfelületi kifáradási határból ($\sigma_{H\text{lim}}$) számítható megengedett feszültségnél (σ_{HP}). Fogaskerékhatásoknál különböző anyagú próbatesteken végzett fárasztóvizsgálatok segítségével határozzák meg a $\sigma_{H\text{lim}}$ értékét. Tehát:

$$\sigma_H \leq \sigma_{HP} = \frac{\sigma_{H\text{lim}} \cdot Z_{NT} \cdot Z_L \cdot Z_R \cdot Z_v \cdot Z_w \cdot Z_x}{S_{H\text{min}}}$$

ahol: $\sigma_{H\text{lim}}$ – a fogfelület érintkezési feszültségből származó kifáradási határa,

$S_{H\text{min}}$ - a felületi kifáradás elleni biztonsági tényleg, ajánlott értéke $S_{H\text{min}} = 1-1,3$,

Z_{NT} – a terhelés ciklusidőmúlt függő élettartam tényleg,

Z_L – a kenőanyagotól függő tényleg, általában:1,

Z_R – az érdességtől függő tényleg, általában:1,

Z_v – a sebességtől függő tényleg, általában:1,

Z_w – az anyagpárosítástól függő tényleg, általában:1,

Z_x – a mérettől függő tényleg, általában:1.

Kifejtve az összefüggést kapjuk:

$$\sigma_H = Z_H \cdot Z_E \cdot Z_{\beta} \cdot Z_B \cdot \sqrt{\frac{2000 \cdot T_i}{b \cdot d_i^2}} \cdot \frac{u+1}{u} \cdot \sqrt{K_A \cdot K_v \cdot K_{H\beta} \cdot K_{Ha}} \leq \frac{\sigma_{H\text{lim}} \cdot Z_{NT} \cdot Z_L \cdot Z_R \cdot Z_v \cdot Z_w \cdot Z_x}{S_{H\text{min}}},$$
Ha bevezetjük a b/d₁ viszonyszámot, akkor a kiskerék minimális osztókörátmérőjét a következő kifejezésből számíthatjuk ki:

\[
\sqrt{\frac{Z_{H} \cdot Z_{E} \cdot Z_{V} \cdot Z_{W} \cdot Z_{X}}{Z_{L} \cdot Z_{R} \cdot Z_{V} \cdot Z_{W} \cdot Z_{X}} \cdot \left(\frac{S_{H_{\text{min}}}}{\sigma_{H_{\text{lim}}} \cdot Z_{NY}} \right)^2 \cdot K_{A} \cdot K_{L} \cdot K_{I_{p}} \cdot K_{H_{d}} \cdot \frac{2000 \cdot T_{1}}{u+1} \cdot \frac{b}{d_{1}} \cdot \frac{1}{u} \leq d_{1}}
\]

A fenti összefüggést az ipari hajtóművek előtervezéséhez a jellemző K⁺ teherbírás mutató szám bevezetésével a következő alakra hozhatjuk:

\[
d_{1} = \sqrt{\frac{2000 \cdot T_{1}}{u+1} \cdot \frac{b}{d_{1}} \cdot \frac{1}{u} \cdot K^{+} \cdot \frac{1}{u} \cdot \frac{1}{u}}
\]

A képletben szereplő b/d₁ viszonyszámot és a K⁺ teherbírás mutatót az anyagminőség alapján előzetesen fel kell venni!

Méretezés fogtő igénybevételre

A fogaskerékpár szükséges modulját a fogakat terhelő erők okozta igénybevételek alapján lehet meghatározni. A fogtőteherbírás számításához ismerni kell a fogtő kritikus (törési) keresztmetszetét. A fogtő igénybevételének legkedvezőtlenebb esete, amikor a normáfogerő (Fₙ) támadáspontja a fog fejélen van 9.5. ábra.

9.5. ábra: A fogtőhajlítás terhelési és igénybevételi modellje
A fogkontúron ébredő feszültségek maximuma a fogtőgörbe érintőjének érintési pontjában van, amely a fog középvonalánál 30°-os szöget zár be. A fogtő veszélyes keresztmetszetét az ábrán G és H pontokkal jelöltük. A normálfőgőrő merőleges komponensei \(F_n \) és \(F_m \) a fogtőben nyomó \((\sigma_n) \), hajlító \((\sigma_v) \) és nyíró \((\tau) \) igénybevételt okoznak. A számítási modellék általában csak a tiszta hajlítást veszik figyelembe, és a fogat csak arra méretezik. A fog 9.5. ábrán megadott geometriai adataival írhatjuk:

\[
\sigma_h = \frac{M}{K} = \frac{F_m \cdot h_F}{s_F^2 \cdot b} = \frac{6 \cdot F_n \cdot \cos \alpha_{F_n} \cdot h_n}{s_F^2 \cdot b} = \frac{6 \cdot F \cdot \cos \alpha_{F_n} \cdot \lambda \cdot m}{v^2 \cdot m^2 \cdot b \cdot \cos \alpha_w} =
\]

\[
= \frac{F}{b \cdot m} \cdot \frac{6 \cdot \cos \alpha_{F_n} \cdot \lambda}{v^2 \cdot \cos \alpha_w} = \frac{F}{b \cdot m} \cdot Y_{F_n},
\]

ahol: \(M \) - a hajlító nyomaték,
\(K \) - a keresztmetszeti tényező,
\(h_F = \lambda \cdot m \) - az \(F_m \) erőkomponens távolsága a G ponttól.
\(s_F = v \cdot m \) - a \(\overline{GH} \) pontok távolsága,
\(b \) - a fogszélesség,
\(Y_{F_n} \) - a fogalaktényező.

Az így meghatározott névleges hajlítófeszültséget, ha a valós kapcsolódási feltételek szerint módosítjuk, akkor a tényleges fogtő feszültséget kapjuk (dinamikus hatások nélkül):

\[
\sigma_{FO} = \frac{F}{b \cdot m} \cdot Y_{F_o} \cdot Y_{sa} \cdot Y_v \cdot Y_{\beta},
\]

ahol: \(Y_{sa} \) – a feszültségkonzentrációs tényező, amely a fogtőgörbület feszültséggyűjtő hatását veszi figyelembe,
\(Y_v \) - a kapcsolószám-tényező, az \(\varepsilon_v \) kapcsolószám teherbírás növekedésére gyakorolt hatását veszi figyelembe,
\(Y_{\beta} \) – a fogferdeségi tényező, az oszthengeri fohajlásszög (\(\beta \)) hatását veszi figyelembe (egyenes fogazatnál \(Y_{\beta}=1 \)).

A módosított névleges fogtőfeszültség számításánál a terhelést állandónak feltételeztük és nem vettük figyelembe a környezeti hatásokat (a beépítési, üzemeltetési és pontossági sajátosságokat). Ha az egyes befolyásoló tényezőkkel módosítjuk \(\sigma_{FO} \) fogtőfeszültség értékét, akkor a maximális feszültség:

\[
\sigma_F = \sigma_{FO} \cdot K_A \cdot K_v \cdot K_{F_\beta} \cdot K_{F_o} = \frac{F}{b \cdot m} \cdot Y_{F_o} \cdot Y_{sa} \cdot Y_v \cdot Y_{\beta} \cdot K_A \cdot K_v \cdot K_{F_\beta} \cdot K_{F_o} ,
\]

© Balogh Tibor, SZE
www.tankonyvtar.hu
ahol: K_A és K_v - jelentése teljesen megegyezik a felületi teherbírásra történő méretezéskor ismertetettel,

$K_{Fβ}$ és K_{Fa} - jelentése is hasonló az előzőekben megismert $K_{Hβ}$ és K_{He}-val, csak a fogtőszilárdság esetére vonatkozik.

A fogakerék fogtőkifáradással szemben biztonságosnak mondható, ha a maximális fogtőfeszültség ($σ_F$) kisebb-egyenlő a fogakerék anyagára jellemző fogtő névleges hajlíto kifáradási határból ($σ_{Flim}$) számítható megengedett feszültségnél ($σ_{FP}$).

Fogakerékhatásoknál különböző anyagú próbatesteken végzett fárasztóvizsgálatok segítségével határozzák meg a $σ_{Flim}$ értéket. Tehát:

$$σ_F ≤ σ_{FP} = \frac{σ_{Flim} \cdot Y_{ST} \cdot Y_{NT} \cdot Y_{relT} \cdot Y_X}{S_{Fmin}} ,$$

ahol: $σ_{Flim}$ – a névleges hajlítofeszültségből kifáradási határa,
S_{Fmin} – a fogtő kifáradással megengedett legkisebb biztonsági tényező, ajánlott értéke cserélhető kerekeknél $S_{Fmin}=1,6-1,7$, általános esetben $S_{Fmin}=2,0$,
Y_{ST} – a fogtőfeszültség koncentrációs tényező,
Y_{NT} – az élettartam tényező,
Y_{relT}– relatív feszültségszélsőséges-tényező, egyszerűsített számításoknál $Y_{relT}=1$,
Y_{relT}– relatív érdességi tényező, egyszerűsített számításoknál $Y_{relT}=1$,
Y_X– a mérettényező, általában $Y_X=1$.

Kifejtve az összefüggést kapjuk:

$$σ_F ≤ \frac{F \cdot Y_{Fa} \cdot Y_{Sa} \cdot Y_e \cdot Y_{β} \cdot K_A \cdot K_v \cdot K_{Fβ} \cdot K_{Fa} \cdot S_{Fmin}}{b \cdot m \cdot Y_{relT} \cdot Y_{relT} \cdot Y_X} \cdot Y_{ST} \cdot Y_{NT} = σ_{FP} ,$$

ahonnan a fogakerék szélessége (b) ismeretében a minimálisan szükséges modul (m_{min}) meghatározható:

$$m_{min} = \frac{F \cdot Y_{Fa} \cdot Y_{Sa} \cdot Y_e \cdot Y_{β}}{b \cdot Y_{relT} \cdot Y_{relT} \cdot Y_X} \cdot \frac{S_{Fmin}}{σ_{Flim} \cdot Y_{ST} \cdot Y_{NT}} \cdot K_A \cdot K_v \cdot K_{Fβ} \cdot K_{Fa} .$$

Ellenőrzés berágódásra

A berágódás a fogfelületek durva kopása a relatív csúszás, a nagy terhelés és az elégtelen kenés hatása. A fogakerék kapcsolódása közben fellépő helyi kontaktöhőmérséklet (t_c) a keréktart hőmérsékletéből (t_{tk}) és a kapcsolódás helyén létrejövő pillanatnyi hőmérséklet-emelkedésből ún. hőfokvillám-ból (t_{fs}) határozható meg:
9. A FOGASKEREKEK SZILÁRDSÁGI MÉRETEZÉSE...

\[t_c = t_M + t_{fla} \]

A **9.6. ábrán** látható a kerék fogfelületének hőmérséklet-eloszlása. Megfigyelhetjük, hogy az egyes jellegzetes kapcsolódási pontokban a csúszási körülményeknek megfelelően a kontakthőmérséklet ugrásszerűen változik. H. Blok kísérletei alapján a \(t_{fla} \) villanási hőmérsékletre vonatkozó pontos számításti összefüggéseket a szakirodalomban megtalálhatók.

![Diagram](image)

9.6. ábra: A fogfelület hőterhelése

A berágódás elkerülésének az a feltétele, hogy ez az előbb említett érintkezési hőmérséklet ne érje el a kenőanyagra vonatkozó berágódási hőmérsékletet (\(t_r \)):

\[t_c = t_M + t_{fla} < t_r = x_w \cdot t_{krit} \]

ahol: \(x_w \) – anyagszerkezeti tényező,

\(t_{krit} \) - a kenőanyag kritikus hőmérséklete.

A berágódással szembeni biztonsági tényezőt, tehát a következőképpen írhatjuk fel:

\[S_B = \frac{t_c - t_{olaj}}{t_r - t_{olaj}} \]

Létezik egy másik számítási mód is, amelyénél a fogfelület hőterhelésére vonatkozó ún. integrálthőmérsékletet (\(t_{int} \)) határozzák meg és hasonlítják össze a berágódási határhőmérséklettel (\(t_{Sint} \)). Ha a berágódással szembeni biztonsági tényezőre teljesül:

\[S_{Sint} = \frac{t_{Sint}}{t_{int}} \geq 2 \]

akkor nem kell félni a berágódástól.

Az EHD kenési állapot ellenőrzése

A fogaskerekek érintkezése során a fogfelületek részben legordulnak, részben csúsznak egymáson. A súrlódási állapot jellegét valójában a kenőanyagréteg vastagsága határozza meg. A kenési állapot, tehát a kialakult rétegvastagság függvényében lehet vegyes súrlódás, esetleg határrétegenkés vagy a főpont közelében tiszta folyadéksúrlódás is. A fogfelületek között a kerületi erő függvényében igen nagy érintkezési nyomás jön létre, amely előidézi a kenőolaj

© Balogh Tibor, SZE www.tankonyvtar.hu
viszkozitásának növekedését is, aminek következtében a fogak között olajfilm alakul ki. Ez a vékony olajfilm, olajpárna adja át a terhelést az egyik fogról a másikra, miközben a fogfelületeken rugalmas alakváltozás lép fel. A kialakult résben hidrodinamikai kenés jön létre rugalmas deformációval együtt. Ezt nevezzük elasztó-hidrodinamikai kenési állapotnak (EHD-kenés). Az EHD-kenés kedvezően befolyásolja a fogaskerekek élettartamát, súrlódási ellenállását valamint a berágódás veszélyét is csökkenti, ezért célszerű törekedni az elasztó-hidrodinamikai kenés kialakítására. Ehhez ki kell számítanunk azt a legkisebb kenőréteg vastagságot ($h_{C_{\text{min}}}$), amelynél az EHD kenési állapot létrejön. Kimutatták, hogy a fogfelületek deformációja és a nyomáseloszlás a kenőrétegben nem követi a Hertz-féle elméletet. A 9.7. ábrán jól látható egy kiugró csúcsérték a valóságos nyomásoloszláson.

9.7. ábra. A kenőrés alakja és a nyomásoloszlás az EHD kenés esetén

Tehát a minimálisan szükséges kenőanyagréteg vastagság a C főpontban a következő empirikus összefüggéssel számítható ki:

$$h_{C_{\text{min}}} = 1,6 \cdot \rho_C \cdot E' \cdot \alpha \cdot \left(\frac{\eta_m \cdot v_t}{E \cdot \rho_C} \right)^{0.7} \left(\frac{\rho_c \cdot E' \cdot b}{F_m} \right)^{0.13},$$

ahol: ρ_C – a kapcsolódó fogprofilok homloksíkban értelmezett redukált görbületi sugara,

$$\rho_c = \frac{\rho_{1c} \cdot \rho_{2c}}{\rho_{1c} + \rho_{2c}},$$

E' - a redukált rugalmassági modulus, acél fogaskerekekénél $E' = 2,26 \cdot 10^8$ MPa

$$\frac{1}{E} = 0,5 \cdot \left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2} \right)$$

α– a kenőanyag nyomás-viszkozitás tényezője, ásványolajokra
\[\alpha = (1...4) \cdot 10^{-2} \frac{mm^2}{N}, \]
\[\eta_M \] a kenőolaj dinamikai viszkozitása atmoszférikus nyomáson és üzemi hőmérsékleten,
\[v_l \] – a kapcsolódó fogprofilok összegördülési sebessége a C főpontban,
\[b \] - a működő fogszéliség,
\[F_{tm} \] – a homlokfogérő.

Vezessük be a következő viszonyviszámot:

\[\lambda = \frac{h_{C_{\min}}}{\sum R_a}, \]

ahol: \(h_{C_{\min}} \) – az előzőekben számított érték \(\mu m \)-ben,
\[\sum R_a = R_{a1} + R_{a2} \] - a kapcsolódó fogfelületek átlagos érdessége \(\mu m \)-ben.

\(\lambda \) értékétől függően a kenési állapot a következő lehet:

- Ha \(\lambda > 1 \), hidrodinamikai kenés, berágódási veszély nincs,
- Ha \(1 > \lambda \geq 0.2 \), vegyes súrlódás vagy kvázi-hidrodinamikai kenési állapot, berágódás még nem valószínű,
- Ha \(\lambda < 0.2 \), berágódási veszély van (EP adalékot tartalmazó kenőanyaggal a berágódás elkerülhető lehet).

9.2. A fogaskerek gyártása

A fogaskerék gyártási eljárásokat két nagy csoportra lehet osztani:

- forgácsolással történő megmunkálás,
- forgácnélküli alakítás.

Magyarországon a forgácsmentes gyártási eljárásokat (MULTI cégek kivételével) alig alkalmazzák, pedig ezekkel a korszerű gyártási módszerekkel különösen nagysorozatban és tömeggyártásban gazdaságosan és sokszor jobb minőségben állíthatók elő a fogaskerekek (a fogtő kifáradási tulajdonságai javulnak). Néhány forgácnélküli fogazatellőállítási mód:

- alaklétrehozás folyékony, kásaszerű vagy pépes állapotból,
- alaklétrehozás elektronikus leválasztással,
- alaklétrehozás alaktalan szilárd szemcsés vagy porszerű anyagból,
- képlékenyalakítás,
- fogsajtolás,
- foghengerlés.

A forgácsolás főbb lépései:

- a keréktest bázisfelületeinek kialakítása,
- fogazási műveletek,
- hőkezelési eljárások,
- a fogazat finom megmunkálása (köszörülés).

A továbbiakban a fogaskerekek forgácsoló gyártástechnológiai módszereit ismertetjük röviden összefoglalva. Ezen belül is a fogázási műveletek és finom megmunkálások rövid leírására szorítkozunk.

9.2.1. Hengeres fogazatú kerekek gyártása

Profilozó, lefejtő eljárások

9.8. ábra. Profilozás tárcsamaróval és ujjmaróval

A bemutatott két profilozó eljárás hátránya, hogy azonos modul esetén is minden fogszámhoz és profileltoláshoz más-más szerszám kell, ezért kis termelékenységű és nagyon költséges megmunkálás. Főleg nagyolásra használják, mert a következő lépésben lefejtéssel pontos, hibátlan profil alakítható ki. Megfelelő kialakítású tárcsamaróval belső fogazatú kereket is lehet gyártani.

A lefejtő eljárások során használt szerszámok profilja nem egyezik meg a fogprofillal, hanem a kölcsönös legördítés alatti kinematikai kapcsolat során alakul ki a fogazat burkológörbéje.

Mint az előzőekben láthattuk az evolvens foggörbe úgy jött létre, hogy egy körön (az alapkörön) legördültünk egy egyenest (a fogasléchez). A három elterjedt lefejtő fogazó eljárás a következő:

Maag-rendszerek, fésűskés-szerszámai lefejtő gyalulás lépéseit láthatjuk 9.9. ábrán, amikor is a fogasléchez hasonló, egyenes profilú szerszám végzi a gyaluló (alternáló) főmozgást, a munkadarab pedig a szakaszosan gördülő mellékmozgást. Ez a legegyszerűbb alakú lefejtőszerszám, amelynek alapprofilját a szabvány meghatározza. Határfelületeit síkok alkotják, ezért nagy pontossággal tudják elkészíteni és kopás esetén utánélezni. A fogazandó kereket a fejkörátmérő méretére esztergálják. A szerszámtartó megfelelő szögű beállításával ferde fogazatú kerekek előállítására is alkalmas.
Pfauter-rendszerű, csigamarós lefjő marás (9.10. ábra), amikor a forgó főmozgást a trapéz keresztmetszetű csigamaró szerszám (fogasleé alapprofillal) végzi. Eközben a marónak a gyártandó kerék tengelyirányába történő előtolása is megvalósul. A munkadarab mellékmozgása szintén folytonos forgó mozgás. A lefjőmaró csavarvonalának menetemelkedése miatt a marót a menetemelkedési szögnek (γ) megfelelően kell beállítani, hogy egyenes fogazat jöjjön létre. A maró tengelyének megfelelő beállításával ferde fogazat is készíthető.

Fellows-rendszerű, metszőkeresek lefjő vésés (9.11. a ábra), amikor az alternáló (le- és felfelé) főmozgású, evolvens fogaprofilú, fogaskerék alakú szerszám mellékmozgásként szakaszosan összegördül a munkadarabbal. A metszőkerék fejkörátmérője a gyártandó kerék lábkörátmérőjéig ér, így ezt a lábhézag mértékével nagyobbra készíthetik. Nagy előnye, hogy a belső fogazatok gyártására egyedül alkalmas lefjő eljárás (9.11. b ábra). A metszőkeresek gyártás hátránya, hogy a szerszám sokkal bonyolultabb alakú az előzőekben említetteknél.
Fellows-rendszernél a metszőkeréknek is ferde fogazatának kell lenni ferde fogazat előállításához, ami nagyon költséges és csak nagy sorozatban térül csak meg. Tehát a három említett módszer mindegyike alkalmas ferde fogazatú hengeres kerekek gyártására.

a) Fogaskerékgyártás Fellows-rendszerű metszőkerékkel

b) Belső fogazatú fogaskerék gyártása

9.11. ábra. Fogaskerékgyártás Fellows-rendszerű metszőkerékkel

Hengeres fogaskerek finommegmunkálása

A nagy kerületi sebességű és nagy teherbírású fogaskerek fogfelületeit finommegmunkálással kis felületi érdességüre készítik el. Ezek az eljárások: foghántolás, hámozó lefejtőmarás és fogköszőrülés.

A foghántolás:
Foghántoláskor a szerszám a munkadarabbal (a megmunkálódó kerékkel) csavarkerék-párként kapcsolódik (9.12. ábra).
Mivel a csavarkerekek kapcsolódásakor a fogak a foghossz irányában elcsúsznak egymáson, ezért sebességkülönbség lesz (v_s csúszósebesség) a szerszám kerék és a megmunkálandó kerék között. A v_s csúszósebesség a 9.12. ábrán feltüntetett vektorábrán a munkadarab v_k kerületi sebességének és a szerszám v_{sz} kerületi sebességének különbsége, ami a tangenciális vetületben határozható meg. A jó működéshez a tengelyeket 10…12°-os szögben célszerű beállítani. A hántoló szerszámfogaskerék fog felületeire kb. 2 mm szélességű barázdákat munkálnak be a fogprofilal párhuzamos vagy a fogfelületen ívelt helyzetben. A hántoló eljárást főleg a hőkezelés nélküli ill. nemesített kerekek és indukciósan edzett valamint nitridált fogaskerekek finomfelületi megmunkálására használják.

A hámozó lefejtőmarás:
A lefejtőmaró szerszámot keményfémlapkás kivitelben készítik el, ami a hagyományos lefejtőmaró kinematikai viszonyainak megfelelően működik. A keménylapkás lefejtőmaró lehetővé teszi az edzett (max 64 HRC keménységű) fogaskerekek megmunkálását is. A hámozó fgormarást a fogköszörüléssel összehasonlítva megállapítható, hogy olcsóbb és sokkal termelékenyebb technológia. A megmunkált kerekek 6…8 pontossági fokozatban készíthetők el.

Fogköszörülés:
A fogköszörüléskor a fogtőben köszörülési lépcső jöhet létre, amely a fogtő kifáradási határát csökkenti. Ezért az edzett fogfelületi fogaskerekeket köszörülési ráhagyással forgácsolják (9.13. a ábra), majd hőkezelés után köszörülük. Köszörüléssel általában csak 0,1…0,15 mm rétegvastagság távolítható el, ezért a köszörülési ráhagyást is ekkora nagyságúra kell felvenni!
a) A köszörülési ráhagyás értelmezése

9.13. ábra: A köszörű korong

A terheléseloszlás javítása érdekében a fogakat hosszirányú íveléssel, domborítva készítkik vagy a fogmagasság irányában fejenyesést, láblenyesést alkalmaznak. Ezeket a módosításokat leginkább köszörüléssel tudják megvalósítani.

Megkülönböztetünk:
- profilozó fogköszörülést,
- lefejtő fogköszörülést.

Profilozó fogköszörüléssel (9.13. b ábra) a legpontosabb minőségű (3-as pontossági fokozat) fogaskerekeket lehet előállítani. A köszörű korong profilja megegyezik a gyártandó kerék fogazatának fogárok normálmetszetével. Az ábrán az egytárcsás és kéttárcsás profilozás szerszáma látható. Fontos kérdés a köszörűtárcsa kopása miatti utánállítás, amelyet a korszerű köszörűgépeknél vezérléssel oldanak meg.

Lefejtő fogköszörülés esetén a szerszám és a munkadarab egymáshoz képest lefejtő mozgást végez. A legismertebb fogköszörülési módok:

9.14. ábra: Lefejtő fogköszörülések

Maag-féle kettőcsős fogköszörülés. A két köszörútárcsá egyenesre dolgozik, az egyik a bal oldali a másik a jobb oldali fogoldalt köszörüli. A köszörútárcsák tányér alakúak és csak kb. 2 mm széles köszörülő felület található a külső kerületen. Két típusa van: az $\alpha = 20^\circ$-os alapprofilszöggel bedöntött köszörű tárcsákkal ill. az ún. 0$^\circ$-os Maag fogköszörű (9.14. b ábra), amikor a köszörútárcsák síkjai egymással párhuzamosak, és a megmunkáló kerék ingamozgással gördül be közéjük. A tárcsák és a fogprofilok érintkezési pontjait összekötő egyenes az r_b sugarú alapkört érinti.

9.2.2. A kúpkerekek gyártása

Ebben a részben csak az egyenes fogú kúpkerekek gyártási eljárásaiból ismertetünk néhányat. Mivel a kúpkerekek nem gördíthetők össze közvetlenül sem fogaslevéccel, sem hengeres keréccel, ezért a lefejtő eljárás során a hozzákapcsolódó síkkerékkel gördítjük össze. A képzelt sikkerék fogprofília egyenes vonal és a kapcsolódás úgy működik, mintha fogaslevéccel gördülne össze a gyártandó fogaskerék. A 9.15. ábrán látható gyaluló löketeket végző szerszám, amely egyenes vágóelű készpár, készíti a fog evolvens fogprofílját.
Egyenes fogazatú kúpkerekek gyártására alkalmas két lefejtő eljárást mutatunk be:

Heidenreich-Harbeck rendszerű, kétkéses lefejtő gyalulás (9.16. a ábra), amikor is a felváltva (ellenfázisban) dolgozó késpár a kúpkerekhez tartozó síkkerék egy fogárkának két oldalfelületét helyettesíti. Amikor az egyik kés forgácsol, a másik visszafelé az üres löketet végzi. Egy fog teljes elkészítése után a munkadarab elfordul és kezdődik a következő fog megmunkálása.

Klingenberg-Gleason kétkéses lefejtő gyalulás rendszerű, két tárcsamarós lefejtő marás (9.16. b ábra), amikor a két nagyátmérőjű tárcsamaró betétkései a síkkerék egy fogoldalát képviselik. Ez a
lefjőtomarási eljárás három-négyszeres termelékenységű az előzőleg tárgyalt kétkeses lefjőtő gyaluláshoz képest.

9.3. A fogaskerekek mérése és illesztése

A fogaskerekek rendeltetésének megfelelően, a korszerű gépgyártás igényeihez igazodva, a gyártás során bizonyos méret- és alaktűréséket kell előírni, valamint ezeket mérés útján ellenőrizni kell. A mérések segítségével meg lehet állapítani a hibákat, a végtermék pontosságát valamint ezekből következtethetünk a hibák forrására is. A fogaskerekek tűrésezését szabványelőírások tartalmazzák. Az előforduló hibafajták egyedi vagy összetett hibák lehetnek. Az egyedi (analisztikus) hibának azt nevezzük, amikor a mért jellemző értéke független minden más jellemzőtől. Összetett hibamérés esetén a hibák együttes hatását tudjuk megállapítani, és azt vizsgáljuk, hogy a fogaskerék megfelelő vagy sem.

A pontossági előírások három fő csoportba sorolhatók:

- kinematikai pontosság - a kerék egy teljes körülfordulása alatt határozzák meg az elfordulási szög megengedett legnagyobb hibáját,
- egyenletes járás – a kerék egy fogosztásnyi elfordulása alatt határozzák meg az elfordulási szög megengedett legnagyobb hibáját,
- fogértékelési pontosság – a működő fogfelületek érintkezését megérkezéséért hattók meg.

9.3.1. A fogaskerekek tűrésezése, illesztése és a foghézag értelmezése

A fogazat illesztésének fogalma magában foglalja mindazokat az előírásokat, amelyek segítségével biztosítani lehet a megfelelő foghézag értékét. A szerszám alapprofil helyzetét a hészamentes kapcsolódás esetére állapítják meg. Ha viszont valamilyen foghézagot kívánunk megvalósítani, akkor külső fogazat esetén negatív értékű járulékos profileltolást kell előírni!

A fogaskerekek és fogaskerékghiakítások 12 pontossági fokozatba oszthatók. Ezek a pontosság csökkenésének sorrendjében:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

A gépészetben a legáltalánosabban alkalmazott a 7, 8, 9 pontossági fokozat, aminek a megválasztását a $\xi = \frac{b}{d_{wt}}$ viszonytáblát teszik függővé.

A fogazat illesztésére nyolc illesztési fokot használnak, amelynek jelei:

A, B, C, D, E, F, G, H.

A hozzájuk tartozó foghézag T_{jn} tűrésére nyolc tűrésosztályt állapítanak meg:

x, y, z, a, b, c, d, h.

A 9.17. ábra a foghézag tűrése és az illesztési fok közötti kapcsolatot mutatja.
9.17. ábra: A foghézag tűrése és az illesztési fok

A fogaskerek kapcsolódásakor fontos jellemző a kapcsolóvonal mentén jelentkező ún. normál foghézag \(j_n \). A melegedés miatti hőtágulások, a szerelési, gyártási hibák elkerülésére, illetve a kenési feltételek biztosítása érdekében szükséges a megfelelő foghézag. A szabvány egy minimális garantált foghézagot határoz meg az illesztési fok függvényében, amely csak H illesztési fok esetén \(j_{n\text{min}} = 0 \).

A 9.18. ábrán a különböző foghézagok értelmezését követhetjük figyelemmel.

9.18. ábra: A foghézagok értelmezése

Jelölések:

\[j_n \text{- normálfoghézag,} \]
\[j_t \text{- tangenciális foghézag,} \]
\[j_r \text{- radiális foghézag.} \]

A különböző foghézagok közötti összefüggések:

\[j_n = j_t \cdot \cos \alpha , \]
\[j_r = \frac{j_t}{2 \cdot \tan \alpha_w} . \]
A foghészeg megállapítása azért fontos, hogy elkerüljük a fogaskerekek túlmelegedését, zajosságát:

kis foghészeg ⇒ túlmelegedés, a fogak beszorulása,
nagy foghészeg ⇒ zajos működés.

A tengelytáv tűrésére hat osztályt állapítanak meg a csökkenő pontosság sorrendjében:

I, II, III, IV, V, VI.

A fogaskerekeknél és fogaskerékhatásoknál a pontossági fokozatot és az illesztési fokot meg kell adni. A foghészeg és a tengelytáv tűrésoasztállyát csak akkor kell kiírni, ha ezek eltérnek a szabvány által megadott párosítási szabályoktól.

9.3.2. A fogaskerekek mérése

A fogaskerék alkatrészek egymáshoz kapcsolódásakor (illesztésekor) biztosítani kell a megfelelő pontosságot, tűrést. Ezért a fogaskerekek gyártása során keletkező hibákat, a hibák keletkezésének okát az adott célnak megfelelő mérőműszerekkel vizsgálják. Megkülönböztetünk egyedi és összetett hibamérési eljárásokat. A teljesség igénye nélkül néhány fontos mérési eljárást ismertetünk.

Egyedi hibamérések:

A mérés során vizsgált paraméter értéke független más méretektől, egyedileg mérhető. Ezeket az eljárásokat analitikus méréseknek is nevezik.

a.) A fogvastagság ellenőrzése:

- 1: többfogmérés: többfogmérést \(W \) és tűrését \(T_w \),
- 2: csapmérés,
- 3: foghúrmérés.

b.) A fogazat radiális ütésének ellenőrzése:

- radiális ütés \(F_r \) és tűrése \(F_r \).

c.) A fogprofil ellenőrzése:

- profilhiba \(f_p \) és tűrése \(f_r \).

d.) A fogirány mérése:

- fogirányhiba \(F_{ph} \) és tűrése \(F_{f} \).

e.) Az osztás ellenőrzése:

- alaposztás mérés: az alaposztáshiba \(f_{pbr} \) és tűrése \(f_{pb} \).

a.) A fogvastagság ellenőrzése

1. A többfogmérés

Az egyik legelterjedtebb mérési eljárás, amely külső egyenes és ferde fogazatú hengereskerekekre és belső fogazatú kerekekre egyaránt alkalmazható. A 9.19. a ábrán

© Balogh Tibor, SZE www.tankonyvtar.hu
látható, hogy a mérőeszköz (tárcsás mikrométer) sík lapjai az osztókör közelében (A és B pont) fekszenek fel. (Ez akkor következik be, ha a közrefogott fogak számát jól meghatároztuk.) Mivel az AB egyenes profilmerőleges, ezért érinti az alapkört az N pontban.

9.19. ábra: A többfogmérés

A mért \(W \) többfogmértet a számított értékkkel összehasonlítható dönthető el, hogy a fogvastagság megfelelő vagy nem. A számítás két részből áll:

- a közrefogott fogak számának \((k) \) meghatározása,
- az elméleti \(W \) többfogmérét számítása.

A 9.19. b ábra segítségével írhatjuk:

\[
AB = (k - 1) \cdot \rho + \frac{p}{2} = (k - 0,5) \cdot \pi \cdot m,
\]

másrészt a középponti szöggel kifejezve:

\[
AB = 2 \cdot r \cdot \alpha \cdot \frac{\pi}{180} = m \cdot z \cdot \alpha \cdot \frac{\pi}{180},
\]

a két egyenlet jobb oldalának egyenlősége alapján:

\[
(k - 0,5) \cdot \pi \cdot m = m \cdot z \cdot \alpha \cdot \frac{\pi}{180} \Rightarrow k = z \cdot \frac{\alpha}{180} + 0,5,
\]

\[
\alpha = 20^\circ \text{ esetén} \quad k = \frac{z}{9} + 0,5,
\]

nagyobb profileltolásoknál, ha az \(\alpha_w \) kapcsolószög ismert:
\[k = z \cdot \frac{\alpha_w}{180} + 0,5. \]

Az evolvens tulajdonságai alapján: \(\overline{AB} = ab = W, \)
\[ab = (k-1) \cdot p_b + s_b, \quad \text{tehát} \quad W = (k-1) \cdot p_b + s_b, \]
ahol az alaposztás:
\[p_b = m \cdot \pi \cdot \cos \alpha, \]
az alapkőri fogvastagság az előző fejezetek alapján:
\[s_b = 2 \cdot r_b \left(\frac{s}{2 \cdot r} + \inv \alpha \right), \]
figyelembe véve, hogy \(\alpha_b = 0 \) ezért \(\inv \alpha_b = 0, \)
\[s_b = \frac{d_b}{d} \cdot s + d_b \cdot \inv \alpha = (s + d \cdot \inv \alpha) \cdot \cos \alpha, \quad \text{mivel} \quad \frac{d_b}{d} = \cos \alpha. \]

Az \(s = \frac{m \cdot \pi}{2} + 2 \cdot x \cdot m \cdot \tg \alpha \) összefüggést a fenti egyenletbe helyettesítve kapjuk, hogy:
\[s_b = \left(\frac{\pi}{2} + 2 \cdot x \cdot \tg \alpha + z \cdot \inv \alpha \right) \cdot m \cdot \cos \alpha, \]

tehát a többfogméret:
\[W = (k-1) \cdot m \cdot \pi \cdot \cos \alpha + \left(\frac{\pi}{2} + 2 \cdot x \cdot \tg \alpha + z \cdot \inv \alpha \right) \cdot m \cdot \cos \alpha, \]
rendezés után:
\[W = (k-0,5) \cdot \pi + z \cdot \inv \alpha \cdot m \cdot \cos \alpha + 2 \cdot x \cdot m \cdot \sin \alpha. \]

Az egyenlet első tagja elemi fogazatra vonatkozik, míg a második tagja a profilleltolás hatását veszi figyelembe. A bemutatott eljárás kis módosításokkal alkalmas ferde fogazatú kerekek mérésére is úgy, hogy a homloksík helyett a normálisíkban történik a mérés.

A többfogméret ingadozása (\(V_{wr} \)): A fogaskerék mért legnagyobb és legkisebb többfogméret különbéssége (\(V_{wr} = W_{\text{max}} - W_{\text{min}} \)), tűrése \(V_w \).
2. A csapmérés

Külső és belső fogazatú kerekekre egyaránt alkalmazható mérési módszer. A 9.20. ábrán külső fogazat esetén, páros ill. páratlan fogsámnál látható a δ_M sugarú mérőcsap elhelyezése a fogárokban.

![Diagram](image)

9.20. ábra. A külső fogazat csapmérése

A mérőelemek által meghatározott M távolság az ábra jelöléseivel a következőképpen számítható:

páros fogsáam esetén:

$$M = d_M + \delta_M,$$

páratlan fogsáam esetén:

$$M = d_M \cdot \cos \frac{90^\circ}{z} + \delta_M.$$

A csapmért eltérése: E_M, tűrése T_M.

A csapmérés az egyik legpontosabb eljárás, de kicsit nehézkes a végrehajtása.

3. A foghúrmérés

A fogvastagság ellenőrzésére alkalmazott legrégebbi mérési módszer a foghúrmérés. Ennél a mérési eljárásnál az osztófelületi normál fogvastagság húrméretét (\tilde{s}) mérjük úgy, hogy a műszer a fogtetőfelületre (a fejkörre) támaszkodik (9.21. ábra). A műszer egy kettős tolómérő, amelynek segítségével az osztókörön mérhetjük a húrméretet (\tilde{s}) és a mérőmagasságot (\tilde{h}_m).
A fogazat geometriájából a 9.21. ábra alapján meghatározhatjuk az elméleti húrméretet (\tilde{s}) és az elméleti mérőmagasságot (\overline{h}_u). Először a húrmérethez tartozó középponti szöget számítjuk ki:

$$\Psi_{rad} = \frac{s}{2 \cdot r},$$

majd ezzel a húrméretet

$$\tilde{s} = 2 \cdot r \cdot \sin \Psi,$$

és a mérőmagasságot

$$\overline{h}_u = h_u + r \cdot (1 - \cos \Psi).$$

A számított és a mért foghúrméretet összehasonlítjuk, amiből a mérés pontosságára következtethetünk. A mérés pontosságát befolyásolhatja a tolómérő éleinek kopása és az, hogy általában a fejkörátmérő aránylag durva tűřessel készül. Az ismertetett három mérési módszer közül a többfogmérés a legalkalmazhatóbb eljárás, mivel egyszerűen elvégezhető és az eredmény független a fogtetőfelülettől.

b.) A fogazat ütésének ellenőrzése

Ha a fogaskerék tárcsán az elméleti osztókörhöz képest a fogazat excentrikusan készül el, a fogazaton radiális ütés (F_r) keletkezik. A radiális ütés rendkívül káros lehet. Zajosságot, rezonanciát ill. törést okozhat. Különösen káros lehet abban az esetben, ha pontos szögsebességtvitel a követelmény vagy nagyon kis foghézaggal kell a kereket elkészíteni.
c.) A fogprofil ellenőrzése

A profilhiba a valóságos fogprofil eltérése a névleges (evolvens) fogprofiltól. A profilhiba értelmezése a 9.22. a ábrán látható.

A profilhiba lényegében magában foglalja a profilalakhibát és a profilszöghibát. Profilszöghibáról akkor beszélünk, ha az alapkör nem megfelelő méretűre készült. A profilhiba mérési elvét a 9.22. b ábra szemlélteti. A fogaskerékkel együtt forgó alapkörtárcsán a gördülővonalzót csúszásmentesen gördítjük le. A gördülővonalzóra rögzített tapintógömb ráfekszik a vizsgálandó fogoldalra. Miközben a tapintó az evolvens fogoldalon végig mozog az írószerkezet a diagrampapíron rögzíti a mozgást. Ha a fogoldal pontos evolvens az írószerkezet egyenest ír le. A görbő ingadozása profilalakhibára, felületi hibák

9.22. ábra: A profilhiba mérése

A profilhiba lényegében magában foglalja a profilalakhibát és a profilszöghibát. Profilszöghibáról akkor beszélünk, ha az alapkör nem megfelelő méretűre készült. A profilhiba mérési elvét a 9.22. b ábra szemlélteti. A fogaskerékkel együtt forgó alapkörtárcsán a gördülővonalzót csúszásmentesen gördítjük le. A gördülővonalzóra rögzített tapintógömb ráfekszik a vizsgálandó fogoldalra. Miközben a tapintó az evolvens fogoldalon végig mozog az írószerkezet a diagrampapíron rögzíti a mozgást. Ha a fogoldal pontos evolvens az írószerkezet egyenest ír le. A görbő ingadozása profilalakhibára, felületi hibák

Az alapkör nagyobb a számítottnál
Az alapkör megfelelő, de a fogprofil nem pontos evolvens
Az alapkör kisebb a számítottnál

Az alapkör

- Kisebb
- Megfelelő, de a fogprofil nem pontos evolvens
- Nagyobb

- Fejlenyesés vagy fejlekerekítés

A profilhiba a valóságos fogprofil eltérése a névleges (evolvens) fogprofiltól. A profilhiba értelmezése a 9.22. a ábrán látható.
d.) A fogirány mérése
A fogirányhiba két olyan névleges fogirányvonal közötti távolság a homlokmetszetben, amelyek a valóságos fogirányvonalat a teljes működő fogszalességen közrefogják, **9.23. ábra.**

![Diagram](image)

9.23. ábra: A fogirány mérése

e.) Az osztás ellenőrzése
A fogazat osztáshibája a fogak kapcsolódásakor ütközéseket, szögsebesség ingadozást, nyugtalan zagos járást okozhat. Az alaposztáshiba a valóságos és a névleges alaposztás különbsége (f_{ph}), két szomszédos fog azonos fogfelületén mérve, **9.24 a. ábra.**

![Diagram](image)

a) az alaposztáshiba értelmezése
Az alaposztás ellenőrzése különösen fontos nagy teljesítményt átvivő hajtások és köszörült kerekek esetén. Az alaposztás mérésére hazánkban a könnyen kezelhető kézi Maag mérőkészüléket használják (9.24 b. ábra). A műszeren található a és c beállítható mérőnyúlványok segítségével különböző modulú kerekek is mérhetőek. Az a és b tapintópontokat a kerék névleges alaposztásának megfelelő etalon segítségével állítják be. A tapintót a fogoldalon a műszer mozgatásának segítségével a fejkörtől a hártról meg kell vinni, majd az előzetesen beállított értékhez képest a mérőórán leolvasott érték lesz az f_{br} alaposztáshiba.

Összetett hibamérések:

A fogaskerék nem egy jellemző méretét, tulajdonságát vizsgálják, hanem az összképet. A hibaforrásokat nem különítik el egymástól, így csak arra adnak felvilágosítást, hogy megfelelő-e a kerék vagy nem.

Módszerei:

a.) kétfalos gördülőhiba mérés:

- kétfalos gördülőhiba F_{ν} tűrése F_{i}
- kétfalos gördülőlépésihiba f_{ν} tűrése f_{i}

b.) hordképvizsgálat.

a.) A kétfalos gördülőhiba mérés

A 9.25. a ábrán látható vizsgáló berendezés működési elve a következő. A vizsgálandó kereket rugó segítségével a pontos mesterkerékhez szorítják, és a hézagmentes legördítés során a mérőtengelyt át ingadozását vizsgálják.

9.24. ábra: Az alaposztás mérése
Az eredmények kördiagramon ábrázolhatók (9.25. ábra). Egy teljes körülfordulás során a külső és belső érintőkör közötti távolság az F_i kétprofilos gördülőhiba. Egy fogosztásnak megfelelő szög hoz tartozó legnagyobb ugrás a gördülőllepéshiba f_φ.

b.) Hordképvizsgálat
Az eljárás során az egyik kerék fogfelületét lassan száradó festékkel kenik be, majd összeszerelt állapotban, az ellenkerékkel kis terhelés mellett együtt járatják. A festék a másik kerék fogoldalára tapadva adja a hordképet. Ennek az elhelyezkedésének és nagyságának vizsgálatából következtethetünk a kapcsolódás helyességére ill. jellemzőire.

Az előzőekben ismertetett mérési eljárások tűréseinek táblázatos összefoglalása:

<table>
<thead>
<tr>
<th>Többfogméret és tűrése</th>
<th>W, T_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Többfogméret ingadozás tűrése</td>
<td>V_w</td>
</tr>
<tr>
<td>Radiális ütés tűrése</td>
<td>F_r</td>
</tr>
<tr>
<td>Profilhiba tűrése</td>
<td>F_f</td>
</tr>
<tr>
<td>Fogirányhiba tűrése</td>
<td>F_β</td>
</tr>
<tr>
<td>Alaposztáshiba tűrése</td>
<td>f_{pb}</td>
</tr>
<tr>
<td>Kétprofilos gördülőhiba tűrése</td>
<td>F_i</td>
</tr>
<tr>
<td>Kétprofilos gördülőllepéshiba tűrése</td>
<td>f_i</td>
</tr>
<tr>
<td>A minimális (garantált) foghézag</td>
<td>j_{min}</td>
</tr>
<tr>
<td>Tengelytávolság és tűrése</td>
<td>a, f_a</td>
</tr>
</tbody>
</table>

9.3. táblázat: Mérési eljárások tűréseinek táblázatos összefoglalása
10. FOGASKERÉK-SZERKEZETEK, HAJTÓMŰVEK

10.1. Fogaskerék-szerkezetek

Ebben a fejezetben a teljesség igénye nélkül, néhány az általános gépészetben használt fogaskerék szerkezeti kialakítását mutatjuk be. A fogaskerekek készíthetők öntéssel, hegesztéssel vagy kovácsolással majd az ezt követő forgácsolással. A kisméretű fogaskerekek általában kovácsolt vagy hengerelt nyers darabból kiindulva forgácsolással alakítják ki. A kisméretű kerekek hegesztett kivitelben történő gyártását gazdaságossági szempontok, és esetleg a rövid határido indokolhatja. A 10.1. ábrán egytárcsás és kéttárcsás hegesztett fogaskerék kialakítások láthatóak. Néhány jellemző vastagsági méretet (s₁, s₂...) a modul függvényében szoktak meghatározni.

![10.1. ábra: Egytárcsás és kéttárcsás hegesztett fogaskerék kialakítások](image)

Az öntött fogaskereketek ma már főleg nagyméretű kerekek előállításakor használják. A kerékhegesztet az agy és a koszorú közötti bordák alkalmazásával merevíthetik. A 10.2. ábrán öntött kivitelű tárcsás fogaskereket és bordákkal merevített fogaskereket szemléltet.

![10.2. ábra: Tárcsás fogaskerék és bordákkal merevített fogaskerekek](image)

Változtatható áttételű hajtóművekben (sebességváltókban) találkozhatunk ún. tömbfogaskerekekkel (10.3. ábra), melyek egy agyhoz tartozóan több koszorúból állnak és bordás furatúra képezik ki őket és ezáltal bordás tengelyen eltolhatóak lesznek axiális irányban.

www.tankonyvtar.hu © Balogh Tibor, SZE
Sokszor előfordul, hogy a fogazatok anyaga készül csak nagyobb szilárdságú vagy jobb sürlődási jellemzőkkel rendelkező anyagból. Ebben az esetben (ha a kerék eléggé nagyméretű) a külön koszorút szilárd illesztéssel (zsugorkötéssel) vagy csavarkötéssel erősíti fel a keréktestre. A 10.3. b ábrán egy zsugorkötéssel szerelt keréktest koszorút láthatunk a jellemző méretek feltüntetésével.

A kúpkerekek koszorúját szintén készíthetik az aggyal egy anyagból vagy külön anyagból. A 10.4. ábra egy öntött kúpkereket és egy csavarozott koszorúval ellátott kúpkereket mutat be.

A 10.5. ábra egy zsugorkötéssel szerelt koszorúval kialakított csigakereket és egy öntött csigakereket szemléltet.

© Balogh Tibor, SZE www.tankonyvtar.hu
10.2. Hajtóműszerkezetek

Bolygóművek:
A bolygóművek a járműiparban is általánosan elterjedt fogaskerekes mechanizmusok. Nagyon sokféle változatban készülnek, amelyek különféle hajtási feladatok megvalósítását teszik lehetővé. Megkülönböztetünk b típusú, belső fogazatú kerékpárt, k típusú, külső fogazatú kerékpárt tartalmazó, és kb típusú külső és belső fogazatú kerékpárt egyaránt tartalmazó fogakerék-bolygóművet. A legfontosabb elemei a napkerék, a körülötte forogva keringő bolygókerék, a bolygókerékhelyzet és a bolygókerékeket tartó kar.

A 10.6. ábrán egy egyszerű bolygómű 3D modell és metszeti ábrázolása látható.

Attól függően, hogy a bolygókerék hajtás melyik elemét rögzítik más és más áttétel valósítható meg. Jellegzetes alkalmazási területei a következők: emelőgépek, daruhajtóművek, radarberendezések hajtása, sebességváltók, differenciálművek, nehéz munkagépek és terepjárók kerekeinél használható, mint véghajtás (kerékagy meghajtás). Bolygóműveket elsősorban nagy áttételek esetén alkalmaznak, ahol fontosak a kis méretek is.

(Kis méretben nagy teljesítmény átvitelére is képes.)

A bolygóművek egyéb előnyei:

- sokféle mozgást, így teljesítmény elágazást lehet velük megvalósítani,
- a hatásfokuk általában nagyon jó,
- szimmetrikus kialakításúak, a bemenő és kimenő tengely egy vonalba esik.

Hátrányai:

- nagyobb gyártási pontosságot igényelnek, mint a hagyományos fogakerékhajtóművek,
- nagyobb csapágyterhelések lépnek fel,
- nehézen szerelhetőek és hozzáférhetőek,
- bonyolult a tervezésük.
10.6. ábra: Egyszerű bolygómű 3D modell 2D rajzzal

A 10.7. ábrán egy járműiparban használatos kettős bolygómű félbevágott 3D modellje és a hozzá tartozó robbantott modell (tengely nélkül) tekinthető meg. Az ábra felső részén elkészítettük a bolygómű 2D-s metszeti képét is.
Differenciálművek:

A differenciálmű vagy magyarul kiegyenlítőmű feladata nyomaték átvitele a hajtott tengelyekre úgy, hogy eközben lehetővé teszi a kihajtó tengelyek közötti fordulatszám különbséget. Járművekben a hajtott tengelyek hajtásláncában alkalmazzák. Kanyarodáskor a külső és belső íven haladó kerekek nem azonos utat tesznek meg, ezért különböző fordulatszámmal kell, hogy forogjanak. Különben (differenciálmű nélkül, merev tengelyek esetén) a kerekek megszúsznának vagy jó tapadás esetén a hajtott tengelyt akkora csavarónyomaték terhelhetné, ami törést okozhatna. Hagyományos a kúpkerekű differenciálmű kialakítás, ami egy küpfogaskereket tartalmazó bolygómű. Általános elrendezésben a kihajtó tengelyek egymással szembe fordított küpfogaskerekeivel (a napkerekek) kapcsolódnak a bolygókerekek (amik szintén kúpkerek), amelyek egy csapágyazott házban helyezkednek el. A bolygókeréktartó ház meghajtása legtöbbször egy tányérkerékből és egy nyeleskerékből álló, nagy módosítású küpekerekhajtással történik. Ma már több gyár is készít olyan bolygóműves differenciálművet, amelyben csigahajtást vagy csavarkerékhaftást építenek be a küpfogaskerekek helyett. A 10.8. ábrán egy járműiparban alkalmazott bolygóműves differenciálmű 3D modelljét és robbantott modelljét láthatjuk. A robbantott ábrán jól megfigyelhetjük a napkereket (a tengelyen), a kúpkerekeket, a differenciálmű házat, a bolygókerekeket és tűgörög csapágyait valamint a gyűrűkereket a kép jobb oldalán.
10.8. ábra: Ipari bolygómóveis differenciálmű 3D modell és robbantott modell

Sebességváltó művek:

A gépjárművek nagy része belsőgépessű, Otto-, vagy dízelmotorral üzemel. Ezeknek a motoroknak a teljesítmény-fordulatszám jelleggörbésétől leolvasható, hogy a maximális motorfordulatszám Otto-motornál alig 3-7 szerese, dízelmotornál alig 2-4 szerese az alapjárat fordulatnak. A gépjárműveknek viszont általában ennél tágabb sebességhatárok között kell üzemelniük (5-150 km/óra). Így a maximális sebességük akár 30-szorosát is elérheti a legkisebb sebességüknek. Ezt a motor és a hajtott kerekek közé épített változtatható áttételű és menetközben kapcsolható fogaskerékpárokból álló sebességváltóval tudják biztosítani. Abban az esetben, ha a motor forgatónyomatékának többszörösére van szükség például indításkor, gyorsításkor vagy emelkedőn haladáskor a sebességváltómű a változtatható módosítások közbeiktatásával szintén lehetővé teszi ezt. A sebességváltómű segítségével valósítható meg az is, hogy a motor változatlan fordulatszámánál a hajtókerekek különböző fordulatszámokkal foroghassanak.

A 10.9. ábrán egy egyszerű három sebességi fokozató sebességváltó 3D modellje látható (a fedőlapot eltávolítottuk róla), amelyen nyomon követhetjük a válto elvi működését. A robbantott ábrán kivettük a házból a behajtó-, kihajtó- és kapcsoló tengelyeket a fogaskerekkel együtt (az ábra alsó részén). Így jól láthatók a házban a kapcsolóvillák. A robbantott ábra előterében a szinkronkapcsoló és kapcsolóagyi figyelhető meg. A szinkronizáló kapcsoló segítségével tudjuk kapcsolni ill. azonos fordulatszámra hozni a behajtó tengely fogaskerekét. Az ábra felső részén a sebességváltó 2D metszeti képét is elkészítettük.
10.9. ábra: Sebességváltó 3D modell, robbantott modell és 2D metszeti rajz
IRODALOMJEGYZÉK

© Balogh Tibor, SZE